Functionalized carbon nanotubes as pseudostationary phase for capillary electrophoretic separation of NSAIDs
Date Issued
2008
Date
2008
Author(s)
Huang, Yi-Jin
Abstract
A functionalized multiwalled carbon nanotubes (c-MWNTs) as a pseudostationary phase for the capillary eletrophoretic separation of non-steroidal anti-inflammatory drugs (NSAIDs) was described. In order to increase hydrophilicity of the multiwalled carbon nanotubes (MWNTs) in an aqueous electrolyte, a sonochemical process was used to treat MWNTs in concentrated nitric/sulfuric acid mixture. Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and electron spectroscopy for chemical analysis system (ESCA) were used for the characterization of the oxidized MWNTs. The c-MWNTs afforded sieving mechanism, π-π interaction, hydrophobic interaction, hydrogen bond, and electrostatic interaction to separate NSAIDs, providing a different separation mode from sodium dodecyl sulfate (SDS) micelles. The effect of important factors such as pH and concentration of running buffer, separation voltage, organic modifiers and injection temperature were investigated to acquire the optimum conditions. The optimum experimental conditions for the separation of a drug mixture, which consisted of indoprofen, ketoprofen, suprofen, naproxen, flurbiprofen and fenoprofen were using a mixture of borate buffer (75 mM, pH 10)-methanol (95:5, v/v) containing 0.02 mg/ml c-MWNTs as background electro- lyte by low injection temperature and an applied voltage of +12 kV with UV detection at 214 nm. The separation of these drugs could be achieved with an average plat number of 8.6×104 m-1. Finally, the procedure was applied to analyze NSAIDs spiked in urine sample with satisfactory results.
Subjects
carbon nanotubes
non-steroidal anti-inflammatory drugs
Type
thesis
File(s)![Thumbnail Image]()
Loading...
Name
ntu-97-R95223077-1.pdf
Size
23.32 KB
Format
Adobe PDF
Checksum
(MD5):743728245f6c5aabfaffa8caebf11622