Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. School of Medicine / 醫學系
  4. Improved spectrum analysis in EEG for measure of depth of anesthesia based on phase-rectified signal averaging
 
  • Details

Improved spectrum analysis in EEG for measure of depth of anesthesia based on phase-rectified signal averaging

Journal
Physiological measurement
Journal Volume
38
Journal Issue
2
Date Issued
2017-02
Author(s)
Liu, Quan
Chen, Yi-Feng
SHOU-ZEN FAN  
Abbod, Maysam F
Shieh, Jiann-Shing
DOI
10.1088/1361-6579/38/2/116
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/637711
URL
https://api.elsevier.com/content/abstract/scopus_id/85012911034
Abstract
The definition of the depth of anesthesia (DOA) is still controversial and its measurement is not completely standardized in modern anesthesia. Power spectral analysis is an important method for feature detection in electroencephalogram (EEG) signals. Several spectral parameters derived from EEG have been proposed for measuring DOA in clinical applications. In the present paper, an improved method based on phase-rectified signal averaging (PRSA) is designed to improve the predictive accuracy of relative alpha and beta power, a frequency band power ratio, total power, median frequency (MF), spectral edge frequency 95 (SEF95), and spectral entropy for assessing anesthetic drug effects. Fifty-six patients undergoing general anesthesia in an operating theatre are studied. All EEG signals are continuously recorded from the awake state to the end of the recovery state and then filtered using multivariate empirical mode decomposition (MEMD). All parameters are evaluated using the commercial bispectral index (BIS) and expert assessment of conscious level (EACL), respectively. The ability to predict DOA is estimated using the area under the receiver-operator characteristics curve (AUC). All indicators based on the improved method can clearly discriminate the conscious state from the anesthetized state after filtration (p  <  0.05). A significantly larger mean AUC (p  <  0.05) shows that the improved method performs better than the conventional method to measure the DOA in most circumstances. Especially for raw EEG contaminated by artifacts, when the BIS index is used to indicate the consciousness level, the improvement is 7.37% (p  <  0.05), 9.04% (p  <  0.05), 18.46% (p  <  0.05), 27.73% (p  <  0.05), 14.65% (p  <  0.05), 2.52%, 5.38% and 6.24% (p  <  0.05) for relative alpha and beta power, power ratio, total power, MF, SEF, RE and SE, respectively. However, when the EACL is used to indicate the consciousness level, the improvement is 3.30% (p  <  0.05), 16.69% (p  <  0.05), 15.08% (p  <  0.05), 34.83% (p  <  0.05), 27.78% (p  <  0.05), 5.89% (p  <  0.05), 26.05% (p  <  0.05) and 23.42% (p  <  0.05). Spectral parameters derived from PRSA are more useful to measure the DOA in noisy cases.
Subjects
depth of anesthesia | EEG | phase-rectified signal averaging | spectrum analysis
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science