Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. Other Colleges / 其他學院
  3. Graduate School of Advanced Technology / 重點科技研究學院
  4. Processing Element Architecture Design for Deep Reinforcement Learning with Flexible Block Floating Point Exploiting Signal Statistics
 
  • Details

Processing Element Architecture Design for Deep Reinforcement Learning with Flexible Block Floating Point Exploiting Signal Statistics

Journal
2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2020 - Proceedings
Date Issued
2020
Author(s)
Su, Juyn-Da
PEI YUN TSAI  
URI
https://www.scopus.com/record/display.uri?eid=2-s2.0-85100912188&origin=resultslist
https://scholars.lib.ntu.edu.tw/handle/123456789/721459
Abstract
Deep reinforcement learning is a technique that allows the agent to have evolving learning capability for unknown environments and thus has the potential to surpass human expertise. The hardware architecture for DRL supporting on-line Q-learning and on-line training is presented in this paper. Two processing element (PE) arrays are used for handling evaluation network and target network respectively. Through configuration of two modes for PE operations, all required forward and backward computations can be accomplished and the number of processing cycles can be derived. Due to the precision required for on-line Q-learning and training, we propose flexible block floating-point (FBFP) to reduce the overhead of floating-point adders. The FBFP exploits different signal statistics during the learning process. Furthermore, the respective block exponents of gradients are adjusted following the variation of temporal difference (TD) error to reserve resolution. From the simulation results, the FBFP multiplier-and-accumulator (MAC) can reduce 15.8% of complexity compared to FP MAC while good learning performance can be maintained. © 2020 APSIPA.
Event(s)
2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2020
Subjects
architecture design
Block floating-point
deep Q network
reinforcement learning
Description
Virtual, Auckland, 7 December 2020 through 10 December 2020
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science