Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Materials Science and Engineering / 材料科學與工程學系
  4. Lattice Boundary Enhancement on Thermoelectric Behaviors of Heavily Boron‐Doped Silicon for Energy Harvesting: Electrical versus Thermal Conductivity
 
  • Details

Lattice Boundary Enhancement on Thermoelectric Behaviors of Heavily Boron‐Doped Silicon for Energy Harvesting: Electrical versus Thermal Conductivity

Journal
Advanced Materials Interfaces
ISSN
2196-7350
2196-7350
Date Issued
2024-10-03
Author(s)
Shang Yu Tsai
Po‐Hsien Tseng
Chun Chi Chen
Cheng‐Ming Huang
HUNG-WEI YEN  
Yi‐Sheng Chen
Kun‐Lin Lin
Ranming Niu
Yu‐Sheng Lai
Fu‐Hsiang Ko
DOI
10.1002/admi.202400536
DOI
10.1002/admi.202400536
URI
https://www.scopus.com/record/display.uri?eid=2-s2.0-85205437641&origin=resultslist
https://scholars.lib.ntu.edu.tw/handle/123456789/722577
Abstract
Green energy collection is crucial for achieving future net-zero carbon emissions, with energy harvesting being a key solution. Silicon, a widely used p-type semiconductor doped with boron ions, is prevalent in modern electronics. However, the impact of lattice boundaries from ion implantation doping on thermoelectric properties remains underexplored. A heavily boron-doped silicon layer is used to enhance thermoelectric performance. The layers, formed on silicon, exhibit epitaxial crystal structures under all doping conditions using an ion implantation system. Transmission electron microscopy and atom probe tomography reveal that boron interstitial structures create boundaries in the silicon lattice. These boundaries effectively reduce the thermal conductivity of boron-doped silicon compared to intrinsic silicon. At 372.76 K, the best power factor of the heavily boron-doped silicon layer is 3.05 mW/m·K2, obtained at an implant dose of 1016 cm−2. This study demonstrates the raised electrical conductivity is induced by effectively substituting silicon with boron atoms, and the reduced thermal conductivity is caused by boron interstitial-formed boundaries in silicon. These findings highlight the potential of heavily boron-doped silicon in improving thermoelectric materials and advancing energy-efficient technologies.
Subjects
atom probe tomography
block of phonon penetration
boron interstitial-formed boundaries
heavily boron-doped silicon layer
thermoelectricity
SDGs

[SDGs]SDG7

Publisher
Wiley
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science