Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Biomedical Engineering / 醫學工程學系
  4. Simulation of a real-time dual-loop control system for high-quality personalized cardiopulmonary resuscitation
 
  • Details

Simulation of a real-time dual-loop control system for high-quality personalized cardiopulmonary resuscitation

Journal
Biomedical Signal Processing and Control
Journal Volume
83
Date Issued
2023-05-01
Author(s)
CHIH-WEI SUNG  orcid-logo
WEI-TIEN CHANG  
Chen, Wei-Yub
FU-SHAN JAW  
Shieh, Jiann Shing
DOI
10.1016/j.bspc.2023.104623
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/628233
URL
https://api.elsevier.com/content/abstract/scopus_id/85147325969
Abstract
An individualized high-quality cardiopulmonary resuscitation (HqCPR) is more beneficial for improving outcomes. The current study aimed to develop a personalized HqCPR system with a standard dual closed-loop feedback control. The dual closed-loop control had features such as distance depth control and compression force protection. An ultrasound probe was used to detect the anteroposterior diameter (APD) in real-time, thereby identifying the next compression depth. An air pump was added to Resusci Anne to adjust the APD during simulation. Next, three springs were added to simulate three different human organs. Four sensors simultaneously detected the force distribution of each compression. The normal operation force range was determined in the pretest stage. Two-min CPR was performed at three different temperatures. The compression depth was almost equal to one-third of the APD of Resusci Anne. There were no significant differences in terms of APD and compression depth between the three different temperatures. The personalized chest compression depth was one-third of the APD, which is the current standard in HqCPR. If the compression force was greater than 1.53–12.52 kg, which is the normal range, the compression system was automatically interrupted. Despite in simulation stage currently, the proposed real-time dual-loop control system provided the feasible for next generation HqCPR mechanical device.
Subjects
Cardiopulmonary resuscitation | Mechanical chest compression | Personalized resuscitation | Sensor | Ultrasound
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science