Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Electrical Engineering / 電機工程學系
  4. Distributed Compressive Sensing: Performance Analysis with Diverse Signal Ensembles
 
  • Details

Distributed Compressive Sensing: Performance Analysis with Diverse Signal Ensembles

Journal
IEEE Transactions on Signal Processing
Journal Volume
68
Pages
3500-3514
Date Issued
2020
Author(s)
Hsieh, S.-H.
Liang, W.-J.
Lu, C.-S.
SOO-CHANG PEI  
DOI
10.1109/TSP.2020.2985593
URI
https://www.scopus.com/inward/record.url?eid=2-s2.0-85087477979&partnerID=40&md5=e5b738b1c7bba8aa0ee10751fe0c7b89
https://scholars.lib.ntu.edu.tw/handle/123456789/559213
Abstract
Distributed compressive sensing (DCS) is a framework that considers joint sparsity within signal ensembles along with multiple measurement vectors (MMVs). However, current theoretical bounds of the probability of perfect recovery for MMVs are derived to be essentially identical to that of a single MV (SMV); this is because characteristics of the signal ensemble are ignored. In this paper, we introduce two key ingredients, called 'Euclidean distances between signals' and 'decay rate of signal ensemble,' to conduct a performance analysis of a deterministic signal model under the MMVs framework. We show that, by taking the size of signal ensembles into consideration, MMVs indeed exhibit better performance than SMV. Although our extension can be broadly applied to CS algorithms with MMVs, a case study conducted on a greedy solver, which is commonly known as simultaneous orthogonal matching pursuit (SOMP), will be explored in this paper. When incorporated with our concept by modifying the steps of support detection and signal estimation, we show that the performance of SOMP will be improved to a meaningful extent, especially for short Euclidean distances between signals. Performance of the modified SOMP is verified to meet our theoretical prediction. Moreover, we design a new method based on modified SOMP algorithms for a key application known as cooperative spectrum sensing (CSS). The simulation results demonstrate that our method can benefit from more than one measurement vector, especially when the length of the measurement vectors is smaller than the sparsity of the signals, which is where traditional CS algorithms fail. © 1991-2012 IEEE.
Subjects
Distributed compressive sensing; joint sparsity; multiple measurement vectors (MMVs); simultaneous orthogonal matching pursuit; spectrum sensing
Other Subjects
Decay (organic); Co-operative spectrum sensing; Compressive sensing; Deterministic signals; Euclidean distance; Multiple measurement vectors; Orthogonal matching pursuit; Performance analysis; Theoretical bounds; Compressed sensing
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science