Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Communication Engineering / 電信工程學研究所
  4. Feasibility study of probabilistic Location Inference for Indoor Environment
 
  • Details

Feasibility study of probabilistic Location Inference for Indoor Environment

Date Issued
2010
Date
2010
Author(s)
Chen, Ying-Chih
URI
http://ntur.lib.ntu.edu.tw//handle/246246/253101
Abstract
In fingerprint based localization methods, it is generally believed that compared with deterministic one, there is more robust for probabilistic one against noise result from many possible factors like multipath fading channel, hardware, obstacles shadowing…etc, and more accuracy and stable localization results are also expected. In this work, deterministic and probabilistic methods are implemented as Euclidean Distance and Multivariate Gaussian Inference (Mahalanobis distance) respectively with received signal strength data sets. Not as expected in last paragraph, higher location error happened in MGI than in Euclidean distance. From advance study of MGI, or its dominate item, Mahanobis distance, we learned that it provides not only average RSSI vector used in Euclidean distance but also covariance matrix which provides information about variance and covariance of all signal sources. Distance distribution is proposed here to project high dimension distance distribution to 2-d diagram and thorough these observations, the reason why worse location result in Mahalanobis distance is confirmed by experimenting different training and tracking data combination. Dissimilar RSSI vectors distribution of the same position tells us the instability of covariance matrix varying with time severer than average RSSI vectors. Extreme case of dissimilarity is even happening 100% packet loss in training phase but partially received in tracking phase, resulting zero divided in the calculation of Mahalanobis distance, and MTGI (Multivariate Truncated Gaussian Inference) is proposed to mitigate this situation by filtering packet receive ratio before distance calculation. In the end, two data sets from two testbeds with different environmental characteristic are implied by ED, MGI and MTGI for comparison and verify whole discussion of this work.
Subjects
Indoor Localization
Fingerprint
Probabilistic method
Deterministic method
Multivariate Gaussian
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-99-R97942100-1.pdf

Size

23.32 KB

Format

Adobe PDF

Checksum

(MD5):f45440bf0f5f7779eb757dd4b5a6cbba

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science