Chemopreventive Effects of Phytochemicals and Medicines on M1/M2 Polarized Macrophage Role in Inflammation-Related Diseases
Journal
International Journal of Molecular Sciences
Journal Volume
19
Journal Issue
8
Pages
2208
Date Issued
2018-07
Author(s)
Abstract
Macrophages can polarize into two different states (M1 and M2), which play contrasting roles during pathogenesis or tissue damage. M1 polarized macrophages produce pro-inflammatory cytokines and mediators resulting in inflammation, while M2 macrophages have an anti-inflammatory effect. Secretion of appropriate cytokines and chemokines from macrophages can lead to the modification of the microenvironment for bridging innate and adaptive immune responses. Increasing evidence suggests that polarized macrophages are pivotal for disease progression, and the regulation of macrophage polarization may provide a new approach in therapeutic treatment of inflammation-related diseases, including cancer, obesity and metabolic diseases, fibrosis in organs, brain damage and neuron injuries, and colorectal disease. Polarized macrophages affect the microenvironment by secreting cytokines and chemokines while cytokines or mediators that are produced by resident cells or tissues may also influence macrophages behavior. The interplay of macrophages and other cells can affect disease progression, and therefore, understanding the activation of macrophages and the interaction between polarized macrophages and disease progression is imperative prior to taking therapeutic or preventive actions. Manipulation of macrophages can be an entry point for disease improvement, but the mechanism and potential must be understood. In this review, some advanced studies regarding the role of macrophages in different diseases, potential mechanisms involved, and intervention of drugs or phytochemicals, which are effective on macrophage polarization, will be discussed. ? 2018 by the authors. Licensee MDPI, Basel, Switzerland.
Subjects
Chemoprevention; Inflammation; M1/M2 macrophage; Phytochemicals
SDGs
Other Subjects
apigenin; curcumin; diosgenin; hypoxia inducible factor; inflammasome; interferon regulatory factor; kruppel like factor 4; legumain; peroxisome proliferator activated receptor; phytochemical; sinomenine; STAT1 protein; suppressor of cytokine signaling 1; toll like receptor 4; cytokine; phytochemical; Abrus precatorius; arthropathy; bone marrow derived macrophage; brain damage; brain hemorrhage; brain injury; cancer growth; cell infiltration; chemoprophylaxis; colitis; colorectal disease; cytokine production; cytokine release; disease exacerbation; glioblastoma; hemarthrosis; human; hyperglycemia; immune response; inflammation; inflammatory disease; liver cirrhosis; liver fibrosis; liver injury; liver protection; macrophage; malignant neoplasm; metabolic syndrome X; microenvironment; Murraya exotica; neuroprotection; nonalcoholic fatty liver; nonhuman; obesity; Review; Scutellaria baicalensis; tissue injury; traumatic brain injury; animal; cell polarity; complication; cytology; drug effect; immunology; inflammation; macrophage activation; Animals; Cell Polarity; Cytokines; Humans; Inflammation; Macrophage Activation; Macrophages; Phytochemicals
Type
journal article
File(s)![Thumbnail Image]()
Loading...
Name
ijms-19-02208 (1).pdf
Size
2.23 MB
Format
Adobe PDF
Checksum
(MD5):919c11b71477f6c69c912604357ea0e6
