Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Science / 理學院
  3. Chemistry / 化學系
  4. Preparation, characterizations and photochemical applications of brookite-phase TiO2
 
  • Details

Preparation, characterizations and photochemical applications of brookite-phase TiO2

Date Issued
2009
Date
2009
Author(s)
Kuo, Chih-Kang
URI
http://ntur.lib.ntu.edu.tw//handle/246246/187568
Abstract
In this study, the influences of Ti4+ concentration and reaction temperature on TiO2 phases (anatase, brookite and rutile) formed from hydrolysis of TiCl4 in 5 M HNO3(aq) were investigated. It is found that at the temperature of 100 oC, in the [Ti4+] range between 0.3 and 0.6 M, only brookite/rutile mixed phases form. While at the temperature of 70 oC, as [Ti4+] equals to 0.3, 0.6 and 0.8 M, respectively, brookite/rutile, anatase/brookite/rutile and anatase/rutile mixed phases are obtained. Separation of mixed phases into individual pure anatase, brookite and rutile was achieved via mixing as-synthesized samples with C2H5OH followed by centrifugation. Among them, brookite exhibits the best photocatalytic activity in the photobleaching of methylene blue under 300 nm UV illumination.ure anatase, brookite and rutile samples were characterized via various instruments after calcination at 450 oC for 30 min (condition the same as the fabrication of electrode for dye-sensitized solar cell and water splitting). As revealed by HRTEM, the three phases exhibit their distinctive morphologies: nanoparticle for anatase, nanoplate for brookite and nanorod for rutile. The BET surface areas are 91, 76 and 32 m2/g, respectively. UV-vis spectra showed that the scattering abilities are in the order of rutile, brookite and anatase. hotovoltaic performance of dye-sensitized solar cells made up of anatase, brookite and rutile with the same thickness were measured under AM 1.5 (100 mW/cm2). Due to the superior capability for N719 dye adsorption (N719ads = 0.060 μmol cm-2), anatase-based cell exhibits the highest photoconversion efficiency (η = 4.26%), as compared to those of brookite- (2.50%, N719ads = 0.041 μmol cm-2) and rutile-based (1.55%, N719ads = 0.016 μmol cm-2) cells. natase nanoparticles prepared via sol-gel method (SG) were utilized as active layer and brookite/rutile, due to their better scattering abilities, as scattering layer for DSSC photoanodes. Photoconversion efficiencies were increased from 7.09% without scattering layers to 8.44% and 9.10% with rutile/brookite as scattering layers, respectively. Brookite can not only adsorb more dye but scatter incident light.hotocatalytic water splitting reaction indicated photoconversion efficiencies of pure anatase-, brookite- and rutile-based working electrodes are 0.43%, 0.87% and 0.80%, respectively. Brookite and rutile exhibit better light-harvesting efficiencies than anatase in incident photon-to-current efficiency (IPCE) measurements. Transient times of anatase, brookite and rutile calculated by photocurrent relaxation with time are 0.20, 0.71 and 0.42 s, respectively, which revealed brookite electrode has the longest electron lifetime than the other two polymorphs. he effect of H2SO4 concentration on TiO2 phases formed in TiCl4/HNO3(aq) system was studied via in-situ XRD, NSRRC. It is showed that addition of H2SO4 enables the suppression of brookite/rutile and promotion of anatase in this system, and formation orders of anatase and rutile can be well-controlled by adjusting [H2SO4]. The case that anatase emerges before rutile was chosen to fabricate TiO2/TCO electrode. Such bilayer microstructure is adopted to utilize smaller anatase to adsorb more dye and larger rutile particles to scatter incident light. The photoconversion efficiency is 4.11%, and the result demonstrates that this facile process is very promising to fabricate TiO2/TCO electrode for efficient photovoltaic devices.
Subjects
titanium dioxide
hydrolysis
brookite
dye-sensitized solar cell
photocatalytic water spitting
SDGs

[SDGs]SDG7

Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-98-R93223070-1.pdf

Size

23.32 KB

Format

Adobe PDF

Checksum

(MD5):a4664d1a650bee985fe26ac6a53c2d7a

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science