Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. Occupational Therapy / 職能治療學系所
  4. Predicting Arm Nonuse in Individuals with Good Arm Motor Function after Stroke Rehabilitation: A Machine Learning Study
 
  • Details

Predicting Arm Nonuse in Individuals with Good Arm Motor Function after Stroke Rehabilitation: A Machine Learning Study

Journal
International journal of environmental research and public health
Journal Volume
20
Journal Issue
5
Date Issued
2023-02-25
Author(s)
Chen, Yu-Wen
Li, Yi-Chun
CHIEN-YU HUANG  
Lin, Chia-Jung
Tien, Chia-Jui
WEN-SHIANG CHEN  
Chen, Chia-Ling
KEH-CHUNG LIN  
DOI
10.3390/ijerph20054123
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/633303
URL
https://api.elsevier.com/content/abstract/scopus_id/85150040978
Abstract
Many stroke survivors demonstrate arm nonuse despite good arm motor function. This retrospective secondary analysis aims to identify predictors of arm nonusers with good arm motor function after stroke rehabilitation. A total of 78 participants were categorized into 2 groups using the Fugl-Meyer Assessment Upper Extremity Scale (FMA-UE) and the Motor Activity Log Amount of Use (MAL-AOU). Group 1 comprised participants with good motor function (FMA-UE ≥ 31) and low daily upper limb use (MAL-AOU ≤ 2.5), and group 2 comprised all other participants. Feature selection analysis was performed on 20 potential predictors to identify the 5 most important predictors for group membership. Predictive models were built with the five most important predictors using four algorithms. The most important predictors were preintervention scores on the FMA-UE, MAL-Quality of Movement, Wolf Motor Function Test-Quality, MAL-AOU, and Stroke Self-Efficacy Questionnaire. Predictive models classified the participants with accuracies ranging from 0.75 to 0.94 and areas under the receiver operating characteristic curve ranging from 0.77 to 0.97. The result indicates that measures of arm motor function, arm use in activities of daily living, and self-efficacy could predict postintervention arm nonuse despite good arm motor function in stroke. These assessments should be prioritized in the evaluation process to facilitate the design of individualized stroke rehabilitation programs to reduce arm nonuse.
Subjects
arm nonuse; chronic stroke; machine learning; predictors; stroke rehabilitation
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science