Publication:
Optical properties of ZnO nanorods and CdSe/ZnS quantum dots; CuO nanostructures

dc.contributor陳永芳en
dc.contributor.authorTzeng, Lin-Jieen
dc.creatorTzeng, Lin-Jieen
dc.date2007en
dc.date.accessioned2007-11-26T09:22:18Z
dc.date.accessioned2018-06-28T09:39:02Z
dc.date.available2007-11-26T09:22:18Z
dc.date.available2018-06-28T09:39:02Z
dc.date.issued2007
dc.description.abstractIn the first part of this thesis, we provide an alternative approach that the band edge emission can be greatly enhanced and the defect emission of ZnO nanorods can be reduced by the formations of ZnO/QDs composite. In the photoluminescence (PL) spectra, we observe the strong evidence that the band gap emission enhancement can be as high as 30 times. In the second part, the NiO-Cu¬¬2O superlattices (SLs) and Cu nanotubes were grown based on AAO membranes. We demonstrate the quantum confinement effect in NiO-Cu2O SLs. Finally, we attempt to transform the Cu nanotubes into Cu2O cactus shape nanotubes by using the combination of AAO template and hotplate methods.en
dc.description.tableofcontentsContents Chapter 1 1 Introduction 1 References: 4 Chapter 2 5 Theoretical Background 5 2.1 Band gap structure 5 2.2 Recombination Processes 8 2.3 Photoluminescence (PL) 11 2.3.1 Introduction 11 2.3.2 Experiment Setup 12 2.4 Fluorescence resonance energy transfer (FRET)[3-4] 13 2.4.1 The basic requirements for the observation of FRET as follows. 13 2.5 Scanning Electron Microscopy [5] 15 2.6 Quantum Confinement Effect 17 2.7 Superlattice 19 Reference 21 Chapter 3 22 Enhancement of the band gap emission of ZnO nanorods by the assistance of CdSe/ZnS quantum dots 22 3.1 Introduction 22 3.1 Sample Preparation 25 3.3 Results and Discussion 29 Reference : 37 Chapter 4 39 4.1 Introduction 39 4.2 Copper oxide superlattices 40 4.2.1 Sample Preparation 40 4.2.2 Results and Discussion 42 4.3 Copper Oxide nanotubes 46 4.3.1 Motivation 46 4.3.1 Results and Discussion 48 Reference : 51 Chapter 5 53 Conclusions 53en
dc.identifieren-USen
dc.identifier.urihttp://ntur.lib.ntu.edu.tw//handle/246246/54541
dc.languageen-USen
dc.language.isoen_US
dc.relation.reference1. A. Tsukazaki, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma and M. Kawasaki: Nat. Mater. 4 (2005) 42. 2. A.Ohtomoand A.Tsukazaki ,Semicond.Sci.Technol. 20 (2005)S1 3. J.Nauseand B.Nemeth ,Semicond.Sci.Technol. 20 (2005)S45 4. H. Y. Lin, C. L. Cheng, Y. Y. Chou, L. L. Huang, and Y. F. Chen, Opt. Express 14, 2372 (2006). 5. Y.Cui and C.M.Lieber,Science 291,851(2001) 6. F. H. Nicoll, Appl. Phys. Lett. 9, 13 (1966) 7. C.R. Martin, Science 266,1961(1994) 8. C.R.Martin, Acc.Chem.Res.28,61(1995) 9. D.Routkevitch, T.Bigioin, M.Moskovits,J.M.Xu, J.Phys.Chem.100.14037(1996) 10. T.M.Whitney, J.S.Jiang, P.C.Searson, C.L.Chien,Science 261,1316(1993) 11. D.S.Xu,Y.J.Xu,D.P.Chen,G.L.Guo,L.L.Gui,Y.Q.Tang,Chem.Phys.Lett.325.340 (2000) 12.S.Kenane, L.Piraux,J.Mater.Res.17.401(2002) 13. K.Seeger, semiconductor physics :an introduction ,4th ed ,Springer (1989) 14. C.Kittle, introduction to solid state physics ,7th ed (1996) 15. G.W. Gordon, G. Berry, X.H. Liang, B. Levine, B. Herman microscopy. Biophys J. 74: 2702-2713 (1998) 16. Berney C, Danuser G. Biophys J 84, A Quantitative Comparison,3992-4010 (2003) 17. G.I. Goldstein, D.E. Newbury, P.Echlin, D.C.Joy, C.Fiori, and E. Lifshin, Scanning electron microscopy and X-ray microanalysis,Plenum Press, New York and London (1981) 18. L. Esaki, R. Tsu: Superlattice and negative differential conductivity in semi-conductors. IBM J. Res. Devel. 14, 61-65 (1970). 19. M. G. Bawendi, M. L. Steigerwald, and L. E. Brus, Annu. Rev. Phys Chem. 41, 477 (1990) 20. J. Tittel, W. Gohde, F. Koberling, T. Basche, A. Kornowski, H. Weller, and A. Eychmuller, J. Phys. Chem. B 101, 3013 (1997). 21. M. Bruchez, Jr., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, Science 281, 2013 (1998). 22. X. M. Fan, J. S. Lian, Z. X. Guo and H. J. Lu, Applied Surface Science 239 176-181(2005) 23. P. Zu, Z.K. Tang, G.K.L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma and Y. Segawa. Solid State Commun. 103 p459 (1997), 24. X.W. Sun and H.S. Kwok. J. Appl. Phys. 86, p408 (1999) 25. H. Y. Lin, C. L. Cheng, Y. Y. Chou, L. L. Huang, and Y. F. Chen, Opt. Express 14, 2372 (2006) 26. J. M. Lin, H .Y.Lin, C. L.Cheng, Y. F. Chen Nanotechnology 17 p4391-4394 (2006) 27. J.M.Lin, C.L.Cheng, H.Y.Lin, Y.F.Chen Optics Letters Vol. 31, Issue 21, p. 3173-3175 (2006) 28. Hsu.N .E, Hung.W.K and Chen.Y.F ,J. Appl. Phys 96.4671 (2004). 29. P. Reiss, J Blense, and A Pron, Nano Lett. 2, 784 (2002) 30. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, J. Phys. Chem. B 101, 9463 (1997) 31. N. R. Jana, L. Gearheart, C. J. Murphy, Langmuir 17, 6782 (2001) 32. S. lijima, Nature,13 ,354 (1991) 33. A.M. Morales, C.M. Lieber, Science,258,783 (1998) 34. C.A. Huber, I.E. Huber, M. Sadoqi, J.A. Lubin, S. Manolis, C.B.Prater, Science,263,800 (1994) 35. J. Li, C. Papadoponlos, J.M. Xu, Appl. Phys. Lett. 75 367 (1999) 36. M. Saito, M. Kirihara, T. Taniguchi, M. Miyagi, Appl. Phys. Lett. 55,607 (1994) 37. D. Routkevich, T. Bigioni, M. Moskovits, et al., J. Phys. Chem. 100,14037 (1996) 38. K. Nielsch, F. Müller, A.P. Li, U. Gösele, Adv. Mater. 12,582 (2000) 39. P.R. Evans, G. Yi, W. Schwarzacher, Appl. Phys. Lett. 76,481 (2000) 40. Y.G Guo, L.J Wan, C.F. Zhu, D.L. Yang, D.M. Chen ,C.L. Bai Chem. Mater 15, 664-667(2003) 41. R. S. Liu, S. C. Chang, S. F. Hu, C. Y. Huan phys. stat. sol. (c) 3, No. 5, 1339–1342 (2006) 42. S. Han, H.Y. Chen, Y.B. Chu, H.C. Shih J. Vac. Sci. Technol. B, Vol. 23, No. 6, (2005) 43. C.Kittle, introduction to solid state physics ,7th ed (1996) 44. T. Yu,Y.Zhu, X.Xu, K.S. Yeong,Z.Shen, P.Chen, C.T. Lim,J.T.Leong ,C.H.Sow, Small, 00234(2005) 45. B. Balamurugan, B. R. Mehta, and S. M. Shivaprasad, Appl. Phys. Lett.79, 3176 (2001) 46. H. Masuda and K. Fukuda, Science 268, 1466 (1995) 47. C.-T. Hsieh, J.-M. Chen, H.-H. Lin, and H. C. Shih, Appl. Phys. Lett. 83,3383 (2003) 48. Powder Diffraction File, Joint Committee on Powder Diffraction Standards, ASTM, Philadelphia, PA, 1996, Card 04-0836.en
dc.subject氧化鋅en
dc.subject量子點en
dc.subject硒化鎘en
dc.subject增強en
dc.subject光致螢光光譜en
dc.subjectZnOen
dc.subjectAAOen
dc.subjectPLen
dc.subjectCdSeen
dc.titleOptical properties of ZnO nanorods and CdSe/ZnS quantum dots; CuO nanostructuresen
dc.typethesisen
dspace.entity.typePublication

Files