Options
Development of a respiratory sound labeling software for training a deep learning-based respiratory sound analysis model
Journal
Proceedings of SPIE - The International Society for Optical Engineering
Journal Volume
11792
Date Issued
2021
Author(s)
Abstract
Respiratory auscultation can help healthcare professionals detect abnormal respiratory conditions if adventitious lung sounds are heard. The state-of-the-art artificial intelligence technologies based on deep learning show great potential in the development of automated respiratory sound analysis. To train a deep learning-based model, a huge number of accurate labels of normal breath sounds and adventitious sounds are needed. In this paper, we demonstrate the work of developing a respiratory sound labeling software to help annotators identify and label the inhalation, exhalation, and adventitious respiratory sound more accurately and quickly. Our labeling software integrates six features from MATLAB Audio Labeler, and one commercial audio editor, RX7. As of October, 2019, we have labeled 9,765 15- second-long audio files of breathing lung sounds, and accrued 34,095 inhalation labels,18,349 exhalation labels, 13,883 continuous adventitious sounds (CASs) labels and 15,606 discontinuous adventitious sounds (DASs) labels, which are significantly larger than previously published studies. The trained convolutional recurrent neural networks based on these labels showed good performance with F1-scores of 86.0% on inhalation event detection, 51.6% on CASs event detection and 71.4% on DASs event detection. In conclusion, our results show that our proposed respiratory sound labeling software could easily pre-define a label, perform one-click labeling, and overall facilitate the process of accurately labeling. This software helps develop deep learning-based models that require a huge amount of labeled acoustic data. ? 2021 SPIE.
Subjects
Biological organs; Convolutional neural networks; Learning systems; MATLAB; Medical imaging; Recurrent neural networks; Adventitious sounds; Artificial intelligence technologies; Discontinuous adventitious sounds; Event detection; Health care professionals; Learning Based Models; Respiratory sounds; State of the art; Audio acoustics
Type
conference paper