Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Materials Science and Engineering / 材料科學與工程學系
  4. Low Temperature Diffusion Bonding of Si Chips Sputtered with High Density (111)-Ag Nanotwinned Films
 
  • Details

Low Temperature Diffusion Bonding of Si Chips Sputtered with High Density (111)-Ag Nanotwinned Films

Journal
Journal of Materials Engineering and Performance
Date Issued
2023-01-01
Author(s)
Lai, Yu Chang
Yang, Zi Hong
Chen, Yin Hsuan
Chen, Yen Ting
Lin, Ang Ying
TUNG-HAN CHUANG  
DOI
10.1007/s11665-023-08534-9
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/635043
URL
https://api.elsevier.com/content/abstract/scopus_id/85167905208
Abstract
In this study, the microstructural evolution of Ag films with different amounts of (111)-oriented grains and coincident site lattice Σ3 (CSL-Σ3) twin boundaries after low-temperature direct bonding was demonstrated. The highly (111)-oriented surface grains provided the rapid surface diffusion paths and the special twin boundaries contributed to structural stability of the Ag films during bonding. Combining both, perfect bonding can be achieved at a low temperature of 150 °C for 60 min in the bonding of Ag films with 99.4% (111) grains. Owing to the low recrystallization temperature, bonding interfaces with only a few small voids were observed after bonding at 250 °C for 30 min. Annealing twins grew across the bonding interface and extended to the other side of the Ag films, implying a strong bonding strength. Though increasing the bonding temperature and period could help to achieve a bonding interface with the least voids formed, it was suggested that increasing the amount of (111) grains on the Ag film bonding surfaces is the key point to achieved perfect bonding at temperatures lower than 250 °C. This would provide great potential for Ag as a suitable material for applications in three-dimensional integrated circuit (3D-IC) interconnections.
Subjects
(111)-oriented surface | low temperature direct bonding | microstructural evolution | nanotwins | sputtering Ag films
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science