Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Bioresources and Agriculture / 生物資源暨農學院
  3. Bioenvironmental Systems Engineering / 生物環境系統工程學系
  4. Developing an automatic warning system for anomalous chicken dispersion and movement using deep learning and machine learning
 
  • Details

Developing an automatic warning system for anomalous chicken dispersion and movement using deep learning and machine learning

Journal
Poultry Science
Journal Volume
102
Journal Issue
12
Date Issued
2023-12-01
Author(s)
Chen, Bo Lin
Cheng, Ting Hui
Huang, Yi Che
Hsieh, Yu Lun
Hsu, Hao Chun
Lu, Chen Yi
Huang, Mao Hsiang
Nien, Shu Yao
YAN-FU KUO  
DOI
10.1016/j.psj.2023.103040
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85172196168&doi=10.1016%2fj.psj.2023.103040&partnerID=40&md5=73d05428b9772128eb49ef9b592023ab
https://scholars.lib.ntu.edu.tw/handle/123456789/637233
URL
https://api.elsevier.com/content/abstract/scopus_id/85172196168
Abstract
Chicken is a major source of dietary protein worldwide. The dispersion and movement of chickens constitute vital indicators of their health and status. This is especially evident in Taiwanese native chickens (TNCs), a local variety which is high in physical activity when healthy. Conventionally, the dispersion and movement of chicken flocks are observed in patrols. However, manual patrolling is laborious and time-consuming. Moreover, frequent patrols increase the risk of carrying pathogens into chicken farms. To address these issues, this study proposes an approach to develop an automatic warning system for anomalous dispersion and movement of chicken flocks in commercial chicken farms. Embendded systems were developed to acquire videos of chickens from overhead view in a chicken house, in which approximately 20,000 TNCs were raised for a period of 10 wk. Each video was 5-min in length. The videos were transmitted to a remote cloud server and were converted into images. A You Only Look Once—version 7 tiny (YOLOv7-tiny) object detection model was trained to detect chickens in the images. The dispersion of the chicken flocks in a 5-min long video was calculated using nearest neighbor index (NNI). The movement of the chicken flocks in a 5-min long video was quantified using simple online and real-time tracking algorithm (SORT). The normal ranges (i.e., 95% confidence intervals) of chicken dispersion and movement were established using an autoregressive integrated moving average (ARIMA) model and a seasonal autoregressive integrated moving average with exogenous factors (SARIMAX) model, respectively. The system allows farmers to check up on the chicken farm only when the dispersion or movement values were not in the normal ranges. Thus, labor time can be saved and the risk of carrying pathogens into chicken farms can be reduced. The trained YOLOv7-tiny model achieved an average precision of 98.2% in chicken detection. SORT achieved a multiple object tracking accuracy of 95.3%. The ARIMA and SARIMAX achieved a mean absolute percentage error 3.71% and 13.39%, respectively, in forecasting dispersion and movement. The proposed approach can serve as a solution for automatic monitoring of anomalous chicken dispersion and movement in chicken farming, alerting farmers of potential health risks and environmental hazards in chicken farms.
Subjects
Convolutional neural network (CNN) | Embedded system | Simple online and real-time tracking (SORT) | Taiwanese native chickens (TNCs) | You only look once (YOLO)
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science