Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. School of Dentistry / 牙醫專業學院
  4. Clinical Dentistry / 臨床牙醫學研究所
  5. Effect of Fracture Prevention after Marginal Mandibulectomy Based on a Finite Element Analysis
 
  • Details

Effect of Fracture Prevention after Marginal Mandibulectomy Based on a Finite Element Analysis

Date Issued
2016
Date
2016
Author(s)
Huang, I-Hsuan
DOI
10.6342/NTU201601924
URI
http://ntur.lib.ntu.edu.tw//handle/246246/277110
Abstract
Clinically, surgeons follow a rule of 10 mm to decide whether to perform marginal mandibulectomy or segmental mandibulectomy. However, this rule was based on an experiment performed on a dry mandible with two condyle heads fixed in the cement. Traditionally, reconstruction plates of mandible were bridging two ends of the defect area to reinforce the resected mandible. To manually bend a ready-made reconstruction plate to make it fit the contour of the resected mandible takes time and efforts, whereas to order a custom-made reconstruction plate is expensive. The aim of this study was using three-dimensional finite element analysis to investigate the effect of defect location, defect extent and residual bone height on the stress distribution in resected mandible stress distribution and to investigate the effect of fracture prevention of the continuous reconstruction plate and the separate mini-plates. A basic solid model of mandible was built from CT image and imported into ABAQUS 6.13-2 software. The basic model was transformed into different test models which were designed according to (1) defect location (anterior, left premolar region and left molar region), (2) defect extent (34 mm and 48 mm), and (3) residual bone height (5.0, 7.5, 10.0, 12.5, and 15.0 mm). A continuous reconstruction plate or two separate mini-plates were fixed to one of the resected mandibles (molar defect with 48 mm extent and 5 mm residual bone height) with eight screws. In the mandible model, cancellous bone part and screw parts were meshed with ten-node tetrahedral elements, and cortical bone part and plate parts were meshed with three-node triangular shell elements. The solutions were performed by ABAQUS 6.13-2 software. The study includes three parts. Part I. The finite element model was verified by comparing the volume of mandibular flexure between bilateral first premolars with data in the literature when the mandible was under the conditions of maximum mouth opening and protrusion. Part II. The maximum tensile strain and compressive strain were evaluated in different defect patterns when the mandible was under the conditions of incisor biting and right molar biting. Thresholds of 3000 με and 4000 με for tension and compression sites respectively were used to evaluate the fracture risk of the resected mandibles. Part III. The maximum tensile strain and compressive strain of the molar defect with extent of 48 mm and residual bone height of 5 mm reinforced with a continuous reconstruction plate or two separate mini-plates was evaluated. Thresholds of 3000 με and 4000 με for tension and compression sites respectively were used to evaluate the effect of fracture prevention. Results: (1) When the mandible was under the conditions of maximum mouth opening and protrusion, the upper border of the bilateral mandibular bodies came close to each other. The amount of closure was the largest between two condyle heads. While observing the lower border, the bilateral mandibular bodies became far from each other at the anterior region and close to each other at the posterior region. The amount of closure due to mandibular flexure over bilateral first premolars was 6.3 μm. The data coincided to the literature. (2) The maximum tensile strain was higher but the maximum compressive strain was lower during right molar biting than incisal biting. The wider the defect extent or the less the remained bone height, the higher the strain. To prevent microdamages and reduce the risk of fracture, the maximum tensile strain and the maximum compressive strain of both biting conditions should be considered. The suggested residual bone height was 12.5 mm for anterior region and 15.0 mm for premolar and molar regions at least to prevent microfracture, regardless of the defect extent. (3) Resected mandibles reinforced with plates showed lower value of maximum tensile strain and maximum compressive strain. The thicker the plates were designed, the more the strain value decreased. The maximum compressive strain was decreased to less than 4000 με with either type of the plate reinforcement. The maximum tensile strain was lower when the mandible was reinforced with two separate mini-plates than with a continuous reconstruction plate. However, even if the resected mandible was reinforced with 3 mm-thick separate mini-plates, the maximum tensile strain was higher than 3000 με persistently. The study suggested that the fracture risk of mandible with marginal mandibulectomy was related to the defect location, defect extent and residual bone height. And even if reinforced with plates lower the strain of mandible with marginal mandibulectomy, fracture cannot be effectively prevented.
Subjects
marginal mandibulectomy
fracture prevention
finite element analysis
defect location
defect extent
residual bone height
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-105-R02422006-1.pdf

Size

23.32 KB

Format

Adobe PDF

Checksum

(MD5):69de703e8f342dcfc3dfc5293c1b4dec

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science