Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Science / 理學院
  3. Mathematics / 數學系
  4. Pseudo Least Integrated Squares Estimation For Single-Index Conditional Distribution Models
 
  • Details

Pseudo Least Integrated Squares Estimation For Single-Index Conditional Distribution Models

Date Issued
2010
Date
2010
Author(s)
Huang, Ming-Yueh
URI
http://ntur.lib.ntu.edu.tw//handle/246246/249878
Abstract
A more flexible single-index regression model is employed to characterize the conditional distribution. For this emiparametric model, a pseudo least integrated squares pproach is developed for the estimation of index oefficients. It is shown in the numerical studies that our estimator outperforms both the pseudo maximum likelihood and semiparametric least squares ones. In addition, we propose the generalized cross-validation criteria for bandwidth selection and the bootstrap implementation for the estimation of asymptotic variance and the construction of confidence intervals. With our defined residual process, a test rule is established to check the adequacy of the considered single-index conditional distribution model. To tackle with the problem of sparse variables, a multiple-stage adaptive Lasso algorithm is developed to identify significant variables and achieve the semiparametric efficiency bound. In this study, a class of simulation scenarios was conducted to assess the finite sample properties of the proposed estimators and inference procedures. Two empirical examples from the house-price study in Boston and the environmental study in New York are further used to illustrate the usefulness of our approaches.
Subjects
adaptive Lasso
cross-validation
naive bootstrap
oracle properties
single-index model
pseudo least squares estimator
pseudo least integrated squares estimator
pseudo maximum likelihood estimator
random weighted bootstrap
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-99-R97221023-1.pdf

Size

23.53 KB

Format

Adobe PDF

Checksum

(MD5):e8b1bb05510d1210079ba966c7cabe8c

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science