Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Communication Engineering / 電信工程學研究所
  4. Improved Facial Expression Recognition System Based on Symmetric Features and New Locality Preserving Projection
 
  • Details

Improved Facial Expression Recognition System Based on Symmetric Features and New Locality Preserving Projection

Date Issued
2012
Date
2012
Author(s)
Liu, Jun-Zuo
URI
http://ntur.lib.ntu.edu.tw//handle/246246/252553
Abstract
Based on the increasing of accessible data and the fast development of the computational technology, machine learning attracted lots of attention in the last ten year because of the great demand of automation in human life. Now in the disciplines of pattern recognition, robotics, artificial intelligences, computer vision, and even economics, machine learning has been an indispensible part to extract and discover the valuable information from data. On the other hand, human face related topics such as face detection and recognition became important research fields in pattern recognition and computer vision during the last few decades. This is due to the needs of automatic recognition and surveillance system, the interest in the human visual system on human face perception, and the design of human-computer interface, etc. In this thesis, we focus on using machine learning techniques for facial expression recognition. A facial expression recognition framework is proposed, which includes four steps: feature extraction, denoising mechanism, dimensionality reduction, and facial expression determination. The widely-used local binary pattern feature (LBP) is modified and combined with a new feature extraction method, local phase quantization (LPQ) to represent the facial expression. Since the extracted features are noisy and contain unrelated information for expression recognition task, a denoising mechanism is proposed. Due to the denoising mechanism, the denoised features are more representative for facial expression. Different from the existing dimensionality reduction algorithms, an expression-specific dimensionality reduction algorithm is proposed based on the special properties of facial expression. Finally, the reduced features with more meaning for facial expression are fed into the widely-used Support Vector Machine (SVM) and K-nearest neighbor classifier. From the experimental results, the proposed framework and algorithms achieve the highest recognition rate against the existing methods based on the JAFFE database.
Subjects
Machine learning
feature extraction
dimensionality reduction
manifold learning
facial expression recognition
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-101-R99942103-1.pdf

Size

23.32 KB

Format

Adobe PDF

Checksum

(MD5):9a3e0280db4c4b8ca226870601d06f64

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science