Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Bioresources and Agriculture / 生物資源暨農學院
  3. Bioenvironmental Systems Engineering / 生物環境系統工程學系
  4. Remote Sensing Imagery for Typhoon Rainfall Forecasting ─ ANN Approach
 
  • Details

Remote Sensing Imagery for Typhoon Rainfall Forecasting ─ ANN Approach

Date Issued
2006
Date
2006
Author(s)
Tsai, Meng-Jung
DOI
zh-TW
URI
http://ntur.lib.ntu.edu.tw//handle/246246/56080
Abstract
本研究以西元2000~2004年蒐集之23場颱風事件為例,架構淡水氣象站颱風時期下一時刻之定量降雨預報模式。首先藉由不同之輸入項組合以建構三種不同之輸入模型,輸入變數包含地面氣象站所測得的時雨量資料、颱風特性資料以及GMS-5衛星資料,透過複迴歸分析與BPNN二種模式預報淡水氣象站下一時刻的颱風降雨量,其結果以使用GMS-5三個紅外光波段相對於淡水氣象站的9格雲頂溫度及雨量資料,作為模式之輸入項目,所得結果最佳,模式改善率最大。研究再針對27個雲頂溫度以不同的處理方式縮減變數個數,例如平均值法及主成分分析法等,進一步提出二種不同之輸入模型組合,透過複迴歸分析、BPNN及RBFNN三種模式預報下一時刻颱風降雨量,其測試結果以利用主成份分析縮減變數之方案表現最佳,其中以RBFNN模式最好(相關係數0.51、RMSE值4.74mm),相較於僅以雨量做為輸入項之方案有8.477%之改善,並且RBFNN所建立之颱風降雨預報模式更是明顯優於複迴歸模式12.45%。
Rainfall forecast is very important for improving the efficient management of water resources systems. Nevertheless, accurate rainfall forecasting is still a great challenge faced by hydrologists.
In this study, a station-based rainfall forecast model is constructed to forecast one-hour-ahead rainfall values during typhoon events. The developed model is constructed based on artificial neural networks (ANN) techniques which are capable of handle complex and non-linear systems. The available data are constituted by hourly rainfall values from 23 different events observed at the DanShui observation station and GMS-5 remote sensed data collected during 2000 to 2004.
Firstly, to investigate the influence of the input information, three different schemes (schemes I, II and III) are proposed based on hourly rainfall, characteristics of typhoon and GMS-5 remote sensed data , respectively, and then applied to two different models, backpropagation neural network (BPNN) and multiple regression method (MRM) . The results showed that the BPNN model with scheme III, which includes nine cloud-top-temperatures of three thermal infrared and hourly rainfall measured data, presented the best performance. Furthermore, we have processed the input data reduction by two methods, (a) the average method and (b) the principal component analysis, and investigated their effectiveness through by three models-BPNN, MRM and Radial Basis Function Neural Network (RBFNN). The results suggest that the RBFNN model with input data reduction by the principle component analysis presented the best performance with smallest root mean square error (RMSE=4.74mm) and highest correlation coefficient (CC=0.51) when compared to all investigated schemes and forecast models.
Subjects
颱風降雨預報
雲頂溫度
複迴歸分析
類神經網路
主成份分析
Typhoon rainfall forecasting
cloud-top-temperature
multiple regression method
artificial neural network
principal component analysis
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-95-R93622003-1.pdf

Size

23.53 KB

Format

Adobe PDF

Checksum

(MD5):d476d237e3a32d6791ac13aec429a68f

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science