Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Science / 理學院
  3. Oceanography / 海洋研究所
  4. Spatiotemporal variation in marine plankton communities driven by environmental changes in the East China sea
 
  • Details

Spatiotemporal variation in marine plankton communities driven by environmental changes in the East China sea

Journal
Progress in Oceanography
Journal Volume
232
Start Page
103434
ISSN
0079-6611
Date Issued
2025-03
Author(s)
Chen, Chia-Ting
PEI-CHI HO  
Lin, Fan-Sian
Wong, Esther
Shiah, Fuh-Kwo
Gong, Gwo-Ching
Hsieh, Chih-hao  
DOI
10.1016/j.pocean.2025.103434
URI
https://www.scopus.com/pages/publications/85217195525
https://scholars.lib.ntu.edu.tw/handle/123456789/734517
Abstract
Unicellular plankton are the foundation of marine food webs and biogeochemical cycles. This study analyzed long-term observations (2009–2021) of the taxonomic composition and size structure of nano- to microplankton in the East China Sea to assess the impact of environmental changes on these communities. Over the past decade, aloricate ciliate and chain-forming diatom abundances have declined, likely due to rising sea surface temperatures and decreasing concentrations of phosphate, nitrate, and silicate. Sea surface concentrations of these nutrients and dinoflagellate biomass were positively correlated with the Pacific Decadal Oscillation (PDO) index, while the diatom-to-dinoflagellate ratio decreased as the PDO index increased. These findings reveal the large-scale climatic drivers of nutrient dynamics and plankton composition. The normalized biomass size spectrum (NBSS) slope was shallower in areas with higher salinities, diatom and ciliate biomasses, and diatom-to-dinoflagellate ratios, and it was steeper in areas with higher nutrient concentrations. The NBSS slopes were steeper (i.e. more smaller organisms) during winters with high nutrient concentrations, likely due to reduced light availability from high turbidity and increased grazing pressure. The 2017 summer cruise identified three spatial clusters of plankton communities that were influenced by different water masses. Cluster 1, influenced by the China Coastal Current, was dominated by athecate dinoflagellates. Clusters 2 and 3, influenced by the Taiwan Warm Current and Kuroshio Current, respectively, were dominated by diatoms. This study highlights the importance of long-term monitoring and comprehensive analyses to better understand how plankton communities will respond to climate change and anthropogenic activity.
Subjects
East China Sea
Environmental effects
Long-term trends
Plankton community variation
Seasonal variation
Size structure
Spatial variation
SDGs

[SDGs]SDG13

[SDGs]SDG14

Publisher
Elsevier BV
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science