Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Materials Science and Engineering / 材料科學與工程學系
  4. Study of Delayed Fracture and Low Temperature Toughness on Advanced High Strength Steel
 
  • Details

Study of Delayed Fracture and Low Temperature Toughness on Advanced High Strength Steel

Date Issued
2015
Date
2015
Author(s)
Cheng, Ta-Chien
URI
http://ntur.lib.ntu.edu.tw//handle/246246/273203
Abstract
From industrial revolution to the present, steel is the most popular applying alloy in the world. It has been developed for centuries, which could trace back to 1850s. However, the break-through development of steel just occurred in recent decades. In these decades, the newly developed steels are called advance high strength steels (AHSS). Many causes were involved in the linebreak development of AHSS such as the competition of non-ferrous commercial alloys, global climate, raising cost of production, advanced research technique, etc. Until now, two generation of AHSSs have already been developed. linebreak Furthermore, the scheme of the next generation steel was proposed, and was also placed into practice. However, there are still several issues in the develop-ed AHSSs, which are worth discussing. The first part of this research aims at investigating the delayed fracture(DF) of ultrahigh-strength martensitic steels. The main purposes of this study are to building up the evaluation methods of DF and searching for the effective ways to suppress the DF on 15B30 boron added martenstic (B-MART) steels, including slight addition of niobium and vanadium, heat treatments and precise control of carbides. The results of the first part show that these B-MART steels exhibit the most excellent properties. The tensile strength (TS) of as-quenched 15B30 reaches 1900MPa. With addition of vanadium, the TS of 15B30V reaches about 2100MPa. The effect of niobium addition contributes to the yield strength and ductility. In the meantime, the DF of tempered B-MART steels was examined by hydrogen embrittlement test, which showed that, comparing to high temperature, the low temperature tempered 15B30/M steel exhibits a better hydrogen resistance. Further analysis inferred that, this improvement was contributed by the precipitating of epsilon-carbide. On the other hand, the DF of quenched B-MART steels was evaluated through constrain loading technique, that indicated boron had the negative effect on DF. On the contrary, niobium and vanadium had the positive effect on DF. The purpose of second part is to develop the next generation offshore steel, which meets the Norsok MDS-Y70 standard. This investigation is mainly concentrated on the effect of microstructure on low-temperature impact linebreak toughness of the direct water quenched offshore steel. Martensite dominates the microstructure of quenched surface. In contrast, major bainite, martensite and a few ferrite are observed from the central region of quenched specimen. Ductile to brittle transition temperature of tempered martensite is significantly lower than that of bainite dominated microstructure. The presence of bainite greatly impairs low-temperature impact toughness of the steel due to linebreak the presence of low angle interfaces within the bainite packet. The disappearance of high angle interfaces in the bainite packet results in significantly deteriorated low-temperature impact energy of the offshore steel. Similar results are con-firmed in austempered specimens, which are dominated by bainite.
Subjects
AHSS
delayed fracture
offshore steel
impact toughness
EBSD
SDGs

[SDGs]SDG13

Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-104-D99527018-1.pdf

Size

23.54 KB

Format

Adobe PDF

Checksum

(MD5):b741906326a38bb6c09a02b7857b92ad

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science