Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Environmental Engineering / 環境工程學研究所
  4. Development and environmental performance of a pilot-scale membrane capacitive deionization system for wastewater reclamation: Long-term operation and life cycle analysis
 
  • Details

Development and environmental performance of a pilot-scale membrane capacitive deionization system for wastewater reclamation: Long-term operation and life cycle analysis

Journal
Science of The Total Environment
Journal Volume
957
Start Page
177454
ISSN
0048-9697
Date Issued
2024-12-20
Author(s)
Huei-Cih Liu
Mengshan Lee
CHIA-HUNG HOU  
DOI
10.1016/j.scitotenv.2024.177454
DOI
10.1016/j.scitotenv.2024.177454
URI
https://www.scopus.com/record/display.uri?eid=2-s2.0-85208958528&origin=resultslist
https://scholars.lib.ntu.edu.tw/handle/123456789/723604
Abstract
Wastewater reclamation is regarded as a primary solution for efficient water resource management because of its environmental friendliness and energy efficiency. Membrane capacitive deionization (MCDI) has shown great promise as a practical technology for wastewater reclamation, but challenges remain for the large-scale deployment of this technology due to gaps in understanding its technical and environmental performance. This study presents a pilot-scale MCDI-based wastewater treatment and reclamation system that includes sand filtration (SF), ultrafiltration (UF), MCDI, and ultraviolet (UV) units. Additionally, this research aims to investigate the overall environmental impacts and trade-offs of the system through a life cycle assessment (LCA) approach to identify impact hotspots with the potential for system improvement. Over long-term operation, the water quality characteristics showed significant improvements in conductivity, ammonia-N content, and total hardness, satisfactorily meeting the standards for wastewater reclamation. Results from the impact assessment revealed that the production of 1 m3 of desalinated water for reclamation in the MCDI-based system generates a global warming potential of approximately 2.77 kg CO2 eq, primarily due to electricity consumption and the use of high-impact chemicals. Electricity and chemical consumption contribute nearly 81 % and 15 %, respectively, to the overall impacts. These inputs also have remarkable impacts on marine aquatic ecotoxicity, human toxicity and abiotic depletion. The impacts from material and chemical usage are average out during the scaling-up process due to the increase in water productivity. As demonstrated, the integration of emerging water treatment technologies with high energy efficiency could significantly improve the environmental performance of the system. The results from the present study can offer valuable insights for advancing future wastewater reclamation systems aimed at improving environmental outcomes.
Subjects
Life cycle assessment
Membrane capacitive deionization
Pilot-scale MCDI-based system
Wastewater reclamation
SDGs

[SDGs]SDG6

[SDGs]SDG7

[SDGs]SDG9

[SDGs]SDG12

[SDGs]SDG13

Publisher
Elsevier BV
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science