Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Mechanical Engineering / 機械工程學系
  4. Morphology, ligament strength, and energy absorption of nanoporous copper via vapor phase dealloying
 
  • Details

Morphology, ligament strength, and energy absorption of nanoporous copper via vapor phase dealloying

Journal
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING
Journal Volume
857
Date Issued
2022
Author(s)
Hsieh, SR
Lu, NH
CHIH-HSUAN CHEN  
YUEH-LIEN LEE  
I-Chung Cheng  
DOI
10.1016/j.msea.2022.144131
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/626500
URL
https://api.elsevier.com/content/abstract/scopus_id/85139359495
Abstract
Nanoporous coppers (NPCs) with ligament size down to 800 nm and relative densities ranging from 15.7% to 47.5% were synthesized by vapor phase dealloying (VPD) Cu33Zn67, Cu16Zn84, and Cu6Zn94 precursor alloys. The ligament size of NPCs could be adjusted by applying different VPD temperatures under high vacuum, while the change in the mechanical properties of NPCs were monitored by compression tests. Although NPCs possessed a random ligament structure, the energy absorption capability of NPCs was up to 183.3 MJ/m3, which is an order higher than that of other Cu foam structures fabricated by different methods such as 3D printing, electron beam melting, electro-deposition, chemical dealloying and friction powder compaction. High apparent relative density and ligament connectivity could effectively transmit the compression energy in the form of stress waves, and therefore had higher densification strain and better energy absorption capacity. With the use of corrected Gibson and Ashby scaling equation, the ligament strength of NPC was up to 3456 MPa, which was ten times higher than that of bulk Cu and comparable to that of other ordered or periodic copper foams.
Subjects
Copper; Nanoporous structure; Vapor phase dealloying; Mechanical testing; Energy absorption; MECHANICAL-PROPERTIES; RELATIVE DENSITY; METALS; FOAMS; SIZE
SDGs

[SDGs]SDG9

Publisher
ELSEVIER SCIENCE SA
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science