Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Life Science / 生命科學院
  3. Biochemical Sciences / 生化科學研究所
  4. Role of the midgut-enriched receptor protein tyrosine phosphatase PTP52F in Drosophila melanogaster
 
  • Details

Role of the midgut-enriched receptor protein tyrosine phosphatase PTP52F in Drosophila melanogaster

Date Issued
2012
Date
2012
Author(s)
Santhanam, Abirami
URI
http://ntur.lib.ntu.edu.tw//handle/246246/251024
Abstract
In Drosophila, a number of cellular processes including proliferation and differentiation are regulated by protein tyrosine phosphatases (PTPs). However, to date the mechanisms by which PTPs regulate the developmental processes remain elusive especially in the case of receptor PTPs (RPTPs) which are involved in the regulation of axon guidance and synaptogenesis decisions in Drosophila embryos and larvae. To reveal the other potential functions we utilized systematic data mining approaches focusing on RPTP expression profiles during critical stages of development. This lead to the identification of a highly midgut enriched RPTP-the PTP52F especially in the larva-pupa transition during which the ecdysone action kicks in. Results from real-time PCR and cell based experiments confirmed RPTP52F as an ecdysone response gene. Genetic studies showed a critical role of PTP52F in midgut metamorphosis during larva pupa transition. Using a substrate-trapping strategy we identified, transitional endoplasmic reticulum ATPase94 (TER94), ortholog of human Valosin Containing Protein (VCP) as a bonafide substrate of PTP52F. Interestingly, tyrosine 800 of TER94 which is phosphorylated by Src kinase is targeted and dephosphorylated by PTP52F. We showed that PTP52F mediated dephosphorylation of TER94 could facilitate the ubiquitin mediated degradation of various proteins including Drosophila inhibitor of apoptosis1 (DIAP1) a key regulator controlling midgut cell death. In vivo evidences demonstrated that the forced expression of TER94 rescued the defect of midgut metamorphosis induced by knockdown of PTP52F, suggesting the importance of coordinated action between PTP52F and TER94. Our studies for the first time reveal a novel regulatory role of a RPTP that contributes to proper tissue organization of midgut formation in Drosophila metamorphosis.
Subjects
Drosophila
Development
Midgut
metamorphosis
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-101-D95B46014-1.pdf

Size

23.32 KB

Format

Adobe PDF

Checksum

(MD5):dd3e0a9aef7fa8f8269bbc4ed6912f5f

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science