Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Photonics and Optoelectronics / 光電工程學研究所
  4. PSTD analysis of optical phase conjugation
 
  • Details

PSTD analysis of optical phase conjugation

Date Issued
2012
Date
2012
Author(s)
Huang, Yi-An
URI
http://ntur.lib.ntu.edu.tw//handle/246246/253500
Abstract
In the thesis, we show the development of a simulation tool for optical phase conjugation (OPC) phenomenon. We use the pseudospectral time-domain (PSTD) algorithm to implement our OPC simulation. The PSTD simulation is computationally efficient and memory-economic, enabling accurate modeling of the OPC phenomenon of light penetration through large-scale turbid media. In PSTD algorithm, however, we have a few problems to cope with, including the construction of a light source and an OPC mirror. To avoid the hard-source artificial reflection, a light source is implemented by soft sources. Also, the Gibbs’ phenomenon causes overshoots on the boundary of a soft source. Therefore, we broaden the width of the soft source to reduce the spatial frequency of the input signal. The overshoot noises are eliminated. With these problems solved, the PSTD simulation of OPC phenomenon is robust and error-controllable. The PSTD simulation of OPC phenomenon is divided into two parts as the OPC experiment: the forward and playback scenarios. In the forward scenario, we record the phasor of light scattered by turbid media; in the playback scenario, we emit the recorded scattered light with its phase conjugated and Poynting vectors inverted. The phase-conjugated light penetrates through the turbid media and focus at the location of the original source. By increasing the simulation scale, we can apply the OPC phenomenon to a macroscopic, biological tissue. To speed up the macroscopic simulation, we develop an PSTD simulation of OPC phenomenon with parallel computation, distributing the computation work and data to different CPUs and computer memories, respectively. The time consumption of the OPC simulation reduces as the number of CPUs increases. We develop an efficient simulation technique to model the OPC phenomenon using the PSTD analysis. In the simulation, the phasors of light scattered by turbid media are recorded by the OPC mirror. With these phasors, the OPC mirror emits phase-conjugated light. The light penetrates through the turbid media and focuses at where it originated. As for future applications, our goal is to deliver light to arbitrary location within the turbid media by the OPC simulation. With the progressive tomography of a biological tissue, the development of a non-invasive OPC treatment is promising.
Subjects
pseudospectral time-domain (PSTD) algorithm
optical phase conjugation (OPC)
parallel computing technique
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-101-R98941072-1.pdf

Size

23.32 KB

Format

Adobe PDF

Checksum

(MD5):b8d17d16d8dababcf6632d6075181afb

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science