Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. School of Medicine / 醫學系
  4. Depth of anesthesia prediction via EEG signals using convolutional neural network and ensemble empirical mode decomposition
 
  • Details

Depth of anesthesia prediction via EEG signals using convolutional neural network and ensemble empirical mode decomposition

Journal
Mathematical biosciences and engineering : MBE
Journal Volume
18
Journal Issue
5
Date Issued
2021-06-07
Author(s)
Madanu, Ravichandra
Rahman, Farhan
Abbod, Maysam F
SHOU-ZEN FAN  
Shieh, Jiann-Shing
DOI
10.3934/mbe.2021257
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/637694
URL
https://api.elsevier.com/content/abstract/scopus_id/85108328032
Abstract
According to a recently conducted survey on surgical complication mortality rate, 47% of such cases are due to anesthetics overdose. This indicates that there is an urgent need to moderate the level of anesthesia. Recently deep learning (DL) methods have played a major role in estimating the depth of Anesthesia (DOA) of patients and has played an essential role in control anesthesia overdose. In this paper, Electroencephalography (EEG) signals have been used for the prediction of DOA. EEG signals are very complex signals which may require months of training and advanced signal processing techniques. It is a point of debate whether DL methods are an improvement over the already existing traditional EEG signal processing approaches. One of the DL algorithms is Convolutional neural network (CNN) which is very popular algorithm for object recognition and is widely growing its applications in processing hierarchy in the human visual system. In this paper, various decomposition methods have been used for extracting the features EEG signal. After acquiring the necessary signals values in image format, several CNN models have been deployed for classification of DOA depending upon their Bispectral Index (BIS) and the signal quality index (SQI). The EEG signals were converted into the frequency domain using and Empirical Mode Decomposition (EMD), and Ensemble Empirical Mode Decomposition (EEMD). However, because of the inter mode mixing observed in EMD method; EEMD have been utilized for this study. The developed CNN models were used to predict the DOA based on the EEG spectrum images without the use of handcrafted features which provides intuitive mapping with high efficiency and reliability. The best trained model gives an accuracy of 83.2%. Hence, this provides further scope and research which can be carried out in the domain of visual mapping of DOA using EEG signals and DL methods.
Subjects
convolutional neural network; depth of anesthesia; electroencephalography; empirical mode decomposition; ensemble empirical mode decomposition
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science