Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. International College / 國際學院
  3. Master's Program in Smart Medicine and Health Informatics (SMARTMHI) / 智慧醫療與健康資訊碩士學位學程
  4. Enhanced Heart Rate Prediction Model Using Damped Least-Squares Algorithm
 
  • Details

Enhanced Heart Rate Prediction Model Using Damped Least-Squares Algorithm

Journal
Sensors
Journal Volume
22
Journal Issue
24
Pages
1
Date Issued
2022-12-10
Author(s)
James Jin Won Kang  
An, Angela
Al-Fawar’reh, Mohammad
DOI
https://doi.org/10.3390/s22249679
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/627211
Abstract
Monitoring a patient’s vital signs is considered one of the most challenging problems in telehealth systems, especially when patients reside in remote locations. Companies now use IoT devices such as wearable devices to participate in telehealth systems. However, the steady adoption of wearables can result in a significant increase in the volume of data being collected and transmitted. As these devices run on limited battery power, they can run out of power quickly due to the high processing requirements of the device for data collection and transmission. Given the importance of medical data, it is imperative that all transmitted data adhere to strict integrity and availability requirements. Reducing the volume of healthcare data and the frequency of transmission can improve a device’s battery life via an inference algorithm. Furthermore, this approach creates issues for improving transmission metrics related to accuracy and efficiency, which are traded-off against each other, with increasing accuracy reducing efficiency. This paper demonstrates that machine learning (ML) can be used to overcome the trade-off problem. The damped least-squares algorithm (DLSA) is used to enhance both metrics by taking fewer samples for transmission whilst maintaining accuracy. The algorithm is tested with a standard heart rate dataset to compare the metrics. The results showed that the DLSA provides the best performance, with an efficiency of 3.33 times for reduced sample data size and an accuracy of 95.6%, with similar accuracies observed in seven different sampling cases adopted for testing that demonstrate improved efficiency. This proposed method significantly improve both metrics using ML without sacrificing one metric over the other compared to existing methods with high efficiency.
Subjects
inference algorithm; data accuracy; data efficiency; healthcare; damped least-squares algorithm (DLSA); machine learning; neural networks; training algorithm
Publisher
MDPI
Type
journal article
File(s)
Loading...
Thumbnail Image
Name

sensors-22-09679.pdf

Description
Published
Size

2.43 MB

Format

Adobe PDF

Checksum

(MD5):f5ab135c68740731c00730a8075588df

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science