Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Bioresources and Agriculture / 生物資源暨農學院
  3. Bioenvironmental Systems Engineering / 生物環境系統工程學系
  4. Auto-configuring radial basis function networks for chaotic time series and flood forecasting
 
  • Details

Auto-configuring radial basis function networks for chaotic time series and flood forecasting

Resource
Hydrological Processes , 23(17) , 2450-2459
Journal
Hydrological Processes
Pages
2450-2459
Date Issued
2009-08
Date
2009-08
Author(s)
Chang, Li-Chiu
Chang, Fi-John  
Wang, Yuan-Peng
DOI
10.1002/hyp.7352
URI
http://ntur.lib.ntu.edu.tw//handle/246246/258226
Abstract
The learning strategy of the radial basis function network (RBFN) commonly uses a hybrid learning process to identify the structure and then proceed to search the model parameters, which is a time-consuming procedure. We proposed an evolutionary way to automatically configure the structure of RBFN and search the optimal parameters of the network. The strategy can effectively identify an appropriate structure of the network by the orthogonal least squares algorithm and then systematically search the optimal locations of centres and the widths of their corresponding kernel function by the genetic algorithm. The proposed strategy of auto-configuring RBFN is first testified in predicting the future values of the chaotic Mackey-Glass time series. The results demonstrate the superiority, on both effectiveness and efficiency, of the proposed strategy in predicting the chaotic time series. We then further investigate the model's suitability and reliability in flood forecast. The Lan-Young River in north-east Taiwan is used as a case study, where the hourly river flow of 23 flood events caused by typhoons or storms is used to train and validate the neural networks. The back propagation neural network (BPNN) is also performed for the purpose of comparison. The results demonstrate that the proposed RBFN has much better performance than the BPNN. The RBFN not only provides an efficient way to model the rainfall-runoff process but also gives reliable and precise one-hour and two-hour ahead flood forecasts.
Subjects
radial basis function network
genetic algorithm
Mackey-Glass time series
flood forecast
Type
journal article
File(s)
Loading...
Thumbnail Image
Name

Auto-Configuring RBF Networks for Chaotic Time Series and Flood Forecasting.pdf

Size

485.52 KB

Format

Adobe PDF

Checksum

(MD5):210a2303a937fa373ce4299d705e5b59

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science