Publication:
Is BERT a Cross-Disciplinary Knowledge Learner? A Surprising Finding of Pre-trained Models' Transferability

cris.virtual.departmentElectrical Engineeringen_US
cris.virtual.departmentIntel-NTU Connected Context Computing Centeren_US
cris.virtual.departmentCommunication Engineeringen_US
cris.virtual.departmentComputer Science and Information Engineeringen_US
cris.virtual.departmentNetworking and Multimediaen_US
cris.virtual.departmentCenter for Artificial Intelligence and Advanced Roboticsen_US
cris.virtual.departmentMaster's Program in Smart Medicine and Health Informatics (SMARTMHI)en_US
cris.virtual.orcid0000-0002-9654-5747en_US
cris.virtualsource.department0897e0f8-f71a-40d3-a313-62f0c81793df
cris.virtualsource.department0897e0f8-f71a-40d3-a313-62f0c81793df
cris.virtualsource.department0897e0f8-f71a-40d3-a313-62f0c81793df
cris.virtualsource.department0897e0f8-f71a-40d3-a313-62f0c81793df
cris.virtualsource.department0897e0f8-f71a-40d3-a313-62f0c81793df
cris.virtualsource.department0897e0f8-f71a-40d3-a313-62f0c81793df
cris.virtualsource.department0897e0f8-f71a-40d3-a313-62f0c81793df
cris.virtualsource.orcid0897e0f8-f71a-40d3-a313-62f0c81793df
dc.contributor.authorKao W.-Ten-US
dc.contributor.authorHUNG-YI LEEen-US
dc.creatorKao W.-T;Lee H.-Y.
dc.date.accessioned2023-06-09T07:55:13Z
dc.date.available2023-06-09T07:55:13Z
dc.date.issued2021
dc.description.abstractThis paper investigates whether the power of the models pre-trained on text data, such as BERT, can be transferred to general token sequence classification applications. To verify pre-trained models' transferability, we test the pre-trained models on text classification tasks with meanings of tokens mismatches, and realworld non-text token sequence classification data, including amino acid, DNA, and music. We find that even on non-text data, the models pre-trained on text converge faster, perform better than the randomly initialized models, and only slightly worse than the models using task-specific knowledge. We also find that the representations of the text and non-text pretrained models share non-trivial similarities. © 2021 Association for Computational Linguistics.
dc.identifier.scopus2-s2.0-85126931361
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85126931361&partnerID=40&md5=2c39cfe031a8384cbc790a4dcf8fd343
dc.identifier.urihttps://scholars.lib.ntu.edu.tw/handle/123456789/632481
dc.relation.ispartofFindings of the Association for Computational Linguistics, Findings of ACL: EMNLP 2021
dc.relation.pages2195-2208
dc.subject.otherClassification (of information); Computational linguistics; Amino-acids; Cross-disciplinary; Model transferabilities; Non-trivial; Power; Real-world; Sequence classification; Specific knowledge; Text data; Token sequences; Text processing
dc.titleIs BERT a Cross-Disciplinary Knowledge Learner? A Surprising Finding of Pre-trained Models' Transferabilityen_US
dc.typeconference paper
dspace.entity.typePublication

Files