Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Bioresources and Agriculture / 生物資源暨農學院
  3. Biomechatronics Engineering / 生物機電工程學系
  4. Detecting and counting harvested fish and identifying fish types in electronic monitoring system videos using deep convolutional neural networks
 
  • Details

Detecting and counting harvested fish and identifying fish types in electronic monitoring system videos using deep convolutional neural networks

Journal
ICES Journal of Marine Science
Journal Volume
77
Journal Issue
4
Pages
1367-1378
Date Issued
2020
Author(s)
Tseng, C.-H.
YAN-FU KUO  
DOI
10.1093/icesjms/fsaa076
URI
https://www.scopus.com/inward/record.url?eid=2-s2.0-85091626308&partnerID=40&md5=22faf159e38a1408276d4f2bf46d1361
https://scholars.lib.ntu.edu.tw/handle/123456789/549047
Abstract
The statistics of harvested fish are key indicators for marine resource management and sustainability. Electronic monitoring systems (EMSs) are used to record the fishing practices of vessels in recent years. The statistics of the harvested fish in the EMS videos are manually read and recorded later by operators in data centres. However, this manual recording is time consuming and labour intensive. This study proposed an automatic approach for prescreening harvested fish in the EMS videos using convolutional neural networks (CNNs). In this study, harvested fish in the frames of the EMS videos were detected and segmented from the background at the pixel level using mask regional-based CNN (mask R-CNN). The number of the fish was determined using time thresholding and distance thresholding methods. Subsequently, the types and body lengths of the fish were determined using the confidence scores and the masks predicted by the mask R-CNN model, respectively. The trained mask R-CNN model attained a recall of 97.58% and a mean average precision of 93.51% in terms of fish detection. The proposed method for fish counting attained a recall of 93.84% and a precision of 77.31%. An overall accuracy of 98.06% was obtained for fish type identification. © International Council for the Exploration of the Sea 2020. All rights reserved.
Subjects
Convolutional neural networks; Fish body length; Fish type identification; Instance segmentation; Resource management
SDGs

[SDGs]SDG3

[SDGs]SDG14

Other Subjects
artificial neural network; detection method; fish; harvesting; marine resource; monitoring system; precision; resource management
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science