Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Photonics and Optoelectronics / 光電工程學研究所
  4. Efficient Light Harvesting/Extraction Schemes Employing Structure Designs from Microscale to Nanoscale for InGaN/GaN Devices
 
  • Details

Efficient Light Harvesting/Extraction Schemes Employing Structure Designs from Microscale to Nanoscale for InGaN/GaN Devices

Date Issued
2012
Date
2012
Author(s)
Ho, Cheng-Han
URI
http://ntur.lib.ntu.edu.tw//handle/246246/253779
Abstract
In this thesis, we will firstly focus on InGaN/GaN solar cells, and secondly we move to GaN/InGaN light emitting diodes. The final is our conclusion. First, SiO2 nanorod arrays (NRAs) are fabricated on InGaN-based multiple quantum well (MQW) solar cells using self-assembled Ag nanoparticles as the etching mask and subsequent reactive ion etching. The SiO2 NRAs effectively suppress the undesired surface reflections over the wavelengths from 330 to 570 nm, which is attributed to the light-trapping effect and the improved mismatch of refractive index at the air/MQW device interface. Under the air mass 1.5 global illumination, the conversion efficiency of the solar cell is enhanced by ~21 % largely due to increased short-circuit current from 0.71 to 0.76 mA/cm2. The enhanced device performances by the optical absorption improvement are supported by the simulation analysis as well. Second, InGaN-based multiple quantum well (MQW) solar cells (SCs) employing the p-GaN microdome were demonstrated to significantly boost the conversion efficiency by 102 %. The improvements in short-circuit current density (Jsc, from 0.43 to 0.54 mA/cm2) and fill factor (from 44 % to 72 %) using the p-GaN microdome are attributed to enhanced light absorption due to surface reflection suppression. The concept of microdome directly grown during SC epitaxial growth preserving mechanical robustness and wafer-scale uniformity proves a promising way in promoting the photovoltaic performances of SCs without any additional process. Third, the hierarchical structure of SiO2 nanorod arrays/p-GaN microdomes was applied as a light harvesting scheme on InGaN-based multiple quantum well solar cells. Using self-assembled Ag nanoparticles as the etching mask and subsequent reactive ion etching, SiO2 NRAs were fabricated upon the p-GaN microdomes. Due to the light trapping effect of the roughness and the improved match of refractive index by SiO2 nanorod arrays, the undesired Fresnel reflections are effectively suppressed. Cells with the hierarchical surfaces exhibit excellent photovoltaic performances including enhanced short-circuit current densities and fill factor, and the measured conversion efficiency is enhanced by 1.47-fold. The improved light absorption in device is consistent with the finite-difference time-domain analysis. Finally, we report the enhanced light extraction efficiency of the hierarchical structure, SiO2 nanorods/p-GaN microdomes, fabricating on InGaN/GaN LEDs. Compared with conventional flat LEDs, the light output intensity of bare microdome LED presents an improvement of 16.7 % at 20 mA, yet it boosts to 36.8 % for SiO2 NRA/p-GaN microdome LED. The results are attributed to the scattering effect and the effective refraction indexes of the textured structures that reduce the total internal reflection, contributing to the most light extraction. The enhanced optical performances are supported by the improved light output power calculated by finite-difference time-domain analysis.
Subjects
Solar cell (SC)
InGaN/GaN
Reactive ion etching (RIE)
Nanorod
Antireflection
Light harvesting
Microdome
Light-emitting diode (LED)
Internal/External quantum efficiency (IQE/EQE)
Light extraction efficiency
SDGs

[SDGs]SDG7

Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-101-R99941049-1.pdf

Size

23.32 KB

Format

Adobe PDF

Checksum

(MD5):5e04b9f9d06d0515de37f831353b770c

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science