Publication:
Detecting mouse squamous cell carcinoma from submicron full-field optical coherence tomography images by deep learning

cris.lastimport.scopus2025-05-14T22:38:29Z
cris.virtual.departmentCommunication Engineeringen_US
cris.virtual.departmentElectrical Engineeringen_US
cris.virtual.departmentNetworking and Multimediaen_US
cris.virtual.departmentPhotonics and Optoelectronicsen_US
cris.virtual.departmentElectrical Engineeringen_US
cris.virtual.departmentCenter for Artificial Intelligence and Advanced Roboticsen_US
cris.virtual.orcid0000-0002-8795-1911en_US
cris.virtual.orcid0000-0001-6244-1555en_US
cris.virtualsource.department975a5bdd-0fc4-4f55-906a-1f14db11d57b
cris.virtualsource.department975a5bdd-0fc4-4f55-906a-1f14db11d57b
cris.virtualsource.department975a5bdd-0fc4-4f55-906a-1f14db11d57b
cris.virtualsource.departmenta98603f0-5060-4ee4-a5c2-ccce57a99413
cris.virtualsource.departmenta98603f0-5060-4ee4-a5c2-ccce57a99413
cris.virtualsource.departmenta98603f0-5060-4ee4-a5c2-ccce57a99413
cris.virtualsource.orcid975a5bdd-0fc4-4f55-906a-1f14db11d57b
cris.virtualsource.orcida98603f0-5060-4ee4-a5c2-ccce57a99413
dc.contributor.authorHo C.-Jen_US
dc.contributor.authorCalderon-Delgado Men_US
dc.contributor.authorChan C.-Cen_US
dc.contributor.authorLin M.-Yen_US
dc.contributor.authorTjiu J.-Wen_US
dc.contributor.authorHuang S.-Len_US
dc.contributor.authorHOMER H. CHENen_US
dc.contributor.authorSHENG-LUNG HUANGen_US
dc.creatorHo C.-J;Calderon-Delgado M;Chan C.-C;Lin M.-Y;Tjiu J.-W;Huang S.-L;Chen H.H.
dc.date.accessioned2022-04-25T06:42:14Z
dc.date.available2022-04-25T06:42:14Z
dc.date.issued2021
dc.description.abstractThe standard medical practice for cancer diagnosis requires histopathology, which is an invasive and time-consuming procedure. Optical coherence tomography (OCT) is an alternative that is relatively fast, noninvasive, and able to capture three-dimensional structures of epithelial tissue. Unlike most previous OCT systems, which cannot capture crucial cellular-level information for squamous cell carcinoma (SCC) diagnosis, the full-field OCT (FF-OCT) technology used in this paper is able to produce images at sub-micron resolution and thereby facilitates the development of a deep learning algorithm for SCC detection. Experimental results show that the SCC detection algorithm can achieve a classification accuracy of 80% for mouse skin. Using the sub-micron FF-OCT imaging system, the proposed SCC detection algorithm has the potential for in-vivo applications. ? 2020 Wiley-VCH GmbH
dc.identifier.doi10.1002/jbio.202000271
dc.identifier.issn1864063X
dc.identifier.pmid32888382
dc.identifier.scopus2-s2.0-85091243939
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85091243939&doi=10.1002%2fjbio.202000271&partnerID=40&md5=dee08ed0647346761dbc504b49145214
dc.identifier.urihttps://scholars.lib.ntu.edu.tw/handle/123456789/607104
dc.relation.ispartofJournal of Biophotonics
dc.relation.journalissue1
dc.relation.journalvolume14
dc.subjectcomputer-aided diagnosis
dc.subjectconvolutional neural network
dc.subjectdeep learning
dc.subjectoptical coherence tomography
dc.subjectsquamous cell carcinoma
dc.subjectDiagnosis
dc.subjectLearning algorithms
dc.subjectOptical tomography
dc.subjectSignal detection
dc.subjectTomography
dc.subjectClassification accuracy
dc.subjectDetection algorithm
dc.subjectEpithelial tissue
dc.subjectFull-field optical coherence tomographies
dc.subjectSquamous cell carcinoma
dc.subjectSub-micron resolutions
dc.subjectThree-dimensional structure
dc.subjectTime-consuming procedure
dc.subjectDeep learning
dc.subjectalgorithm
dc.subject.classification[SDGs]SDG3
dc.titleDetecting mouse squamous cell carcinoma from submicron full-field optical coherence tomography images by deep learningen_US
dc.typejournal articleen
dspace.entity.typePublication

Files