Publication: Detecting mouse squamous cell carcinoma from submicron full-field optical coherence tomography images by deep learning
cris.lastimport.scopus | 2025-05-14T22:38:29Z | |
cris.virtual.department | Communication Engineering | en_US |
cris.virtual.department | Electrical Engineering | en_US |
cris.virtual.department | Networking and Multimedia | en_US |
cris.virtual.department | Photonics and Optoelectronics | en_US |
cris.virtual.department | Electrical Engineering | en_US |
cris.virtual.department | Center for Artificial Intelligence and Advanced Robotics | en_US |
cris.virtual.orcid | 0000-0002-8795-1911 | en_US |
cris.virtual.orcid | 0000-0001-6244-1555 | en_US |
cris.virtualsource.department | 975a5bdd-0fc4-4f55-906a-1f14db11d57b | |
cris.virtualsource.department | 975a5bdd-0fc4-4f55-906a-1f14db11d57b | |
cris.virtualsource.department | 975a5bdd-0fc4-4f55-906a-1f14db11d57b | |
cris.virtualsource.department | a98603f0-5060-4ee4-a5c2-ccce57a99413 | |
cris.virtualsource.department | a98603f0-5060-4ee4-a5c2-ccce57a99413 | |
cris.virtualsource.department | a98603f0-5060-4ee4-a5c2-ccce57a99413 | |
cris.virtualsource.orcid | 975a5bdd-0fc4-4f55-906a-1f14db11d57b | |
cris.virtualsource.orcid | a98603f0-5060-4ee4-a5c2-ccce57a99413 | |
dc.contributor.author | Ho C.-J | en_US |
dc.contributor.author | Calderon-Delgado M | en_US |
dc.contributor.author | Chan C.-C | en_US |
dc.contributor.author | Lin M.-Y | en_US |
dc.contributor.author | Tjiu J.-W | en_US |
dc.contributor.author | Huang S.-L | en_US |
dc.contributor.author | HOMER H. CHEN | en_US |
dc.contributor.author | SHENG-LUNG HUANG | en_US |
dc.creator | Ho C.-J;Calderon-Delgado M;Chan C.-C;Lin M.-Y;Tjiu J.-W;Huang S.-L;Chen H.H. | |
dc.date.accessioned | 2022-04-25T06:42:14Z | |
dc.date.available | 2022-04-25T06:42:14Z | |
dc.date.issued | 2021 | |
dc.description.abstract | The standard medical practice for cancer diagnosis requires histopathology, which is an invasive and time-consuming procedure. Optical coherence tomography (OCT) is an alternative that is relatively fast, noninvasive, and able to capture three-dimensional structures of epithelial tissue. Unlike most previous OCT systems, which cannot capture crucial cellular-level information for squamous cell carcinoma (SCC) diagnosis, the full-field OCT (FF-OCT) technology used in this paper is able to produce images at sub-micron resolution and thereby facilitates the development of a deep learning algorithm for SCC detection. Experimental results show that the SCC detection algorithm can achieve a classification accuracy of 80% for mouse skin. Using the sub-micron FF-OCT imaging system, the proposed SCC detection algorithm has the potential for in-vivo applications. ? 2020 Wiley-VCH GmbH | |
dc.identifier.doi | 10.1002/jbio.202000271 | |
dc.identifier.issn | 1864063X | |
dc.identifier.pmid | 32888382 | |
dc.identifier.scopus | 2-s2.0-85091243939 | |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091243939&doi=10.1002%2fjbio.202000271&partnerID=40&md5=dee08ed0647346761dbc504b49145214 | |
dc.identifier.uri | https://scholars.lib.ntu.edu.tw/handle/123456789/607104 | |
dc.relation.ispartof | Journal of Biophotonics | |
dc.relation.journalissue | 1 | |
dc.relation.journalvolume | 14 | |
dc.subject | computer-aided diagnosis | |
dc.subject | convolutional neural network | |
dc.subject | deep learning | |
dc.subject | optical coherence tomography | |
dc.subject | squamous cell carcinoma | |
dc.subject | Diagnosis | |
dc.subject | Learning algorithms | |
dc.subject | Optical tomography | |
dc.subject | Signal detection | |
dc.subject | Tomography | |
dc.subject | Classification accuracy | |
dc.subject | Detection algorithm | |
dc.subject | Epithelial tissue | |
dc.subject | Full-field optical coherence tomographies | |
dc.subject | Squamous cell carcinoma | |
dc.subject | Sub-micron resolutions | |
dc.subject | Three-dimensional structure | |
dc.subject | Time-consuming procedure | |
dc.subject | Deep learning | |
dc.subject | algorithm | |
dc.subject.classification | [SDGs]SDG3 | |
dc.title | Detecting mouse squamous cell carcinoma from submicron full-field optical coherence tomography images by deep learning | en_US |
dc.type | journal article | en |
dspace.entity.type | Publication |