Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Electrical Engineering / 電機工程學系
  4. Improving music auto-tagging by intra-song instance bagging
 
  • Details

Improving music auto-tagging by intra-song instance bagging

Journal
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISBN
9781479928927
Date Issued
2014-01-01
Author(s)
Yeh, Chin Chia Michael
Wang, Ju Chiang
YI-HSUAN YANG  
Wang, Hsin Min
DOI
10.1109/ICASSP.2014.6853977
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/636389
URL
https://api.elsevier.com/content/abstract/scopus_id/84905226999
Abstract
Bagging is one the most classic ensemble learning techniques in the machine learning literature. The idea is to generate multiple subsets of the training data via bootstrapping (random sampling with replacement), and then aggregate the output of the models trained from each subset via voting or averaging. As music is a temporal signal, we propose and study two bagging methods in this paper: the inter-song instance bagging that bootstraps song-level features, and the intra-song instance bagging that draws bootstrapping samples directly from short-time features for each training song. In particular, we focus on the latter method, as it better exploits the temporal information of music signals. The bagging methods result in surprisingly effective models for music auto-tagging: incorporating the idea to a simple linear support vector machine (SVM) based system yields accuracies that are comparable or even superior to state-of-the-art, possibly more sophisticated methods for three different datasets. As the bagging method is a meta algorithm, it holds the promise of improving other MIR systems. © 2014 IEEE.
Subjects
Bagging | ensemble classification | feature pooling | music auto-tagging | sparse coding
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science