Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Applied Mechanics / 應用力學研究所
  4. Broadband modeling of nonlinear techniques for vibration control and energy harvesting
 
  • Details

Broadband modeling of nonlinear techniques for vibration control and energy harvesting

Date Issued
2011
Date
2011
Author(s)
Wu, Yi-Chieh
URI
http://ntur.lib.ntu.edu.tw//handle/246246/249960
Abstract
The decrease in consumption of electronic components has allowed the growth of mobile wireless applications and with this rapid growth, the replacement and disposal of battery have become a problem. Therefore, alternative power sources from ambient environment recently grasped people''s interest. The basic idea of energy harvesting consists of converting a given source to a more useful form of energy. Among the numerous available energy sources, piezoelectric materials that convert vibrational energy into electrical energy received much attention as low-level mechanical vibrations are available in many environments and as piezoelectric transducers allow the direct conversion of vibrations into electricity. In addition, piezoelectric materials feature high power density and have promising integration potentials.

Recently, nonlinear techniques were proposed for vibration control and extended as an energy conversion interface in order to increase the efficiency of power harvesting using piezoelectric materials. The nonlinear interfaces consists in a switch device connected with the piezoelectric element. The basic concept of using nonlinear techniques is to turn on the switch when the vibration gets its maximum and minimum values and so the voltage would be inverted to hold the magnitude. The switching frequency depends on the electromechanical structural response and the input excitation. The nonlinear process therefore induces an additional piecewise voltage which could be seen as a dry friction effect on the system and leads to a vibration damping process. In a electromechanical point of view, the induced damping effect is explained by the increase of the converted energy by the piezoelectric element. The converted energy could be harvested and accordingly, the nonlinear technique has also been used in energy harvesting system, showing bright performance in monochromatic excitation. However, in practical application, the excitation would be broadband and random rather than single frequency and so the performance when using nonlinear techniques would be more complicated to evaluate.

The purpose of this work is to construct a broadband modeling using the concept of frequency-domain self-sampling and self-aliasing and permit containing more frequency information. The broadband modeling is firstly discussed with vibration control techniques as an introductory section and then extended to energy harvesting techniques. The modeling is separated into two parts: displacement input and force excitation. With this broadband modeling, the systematic performance could be described directly instead of the classic recursive time-domain analysis considering a switching delay and with a switching frequency which could be other than $2omega_0$. The broadband modeling is also analyzed with several well-known excitation cases as theoretical analysis and the simulation results based on theoretical analysis and broadband modeling are then compared with the time-domain resolution (classic time-domain analysis) to show its effectiveness. The prediction of harvested power under a monochromatic force excitation is also compared with the experimental results in previous literature.

Simulation results from theoretical analysis and numerical calculation based on broadband modeling match well with the time-domain resolution considering different excitations and the broadband modeling is validated to be effective. In addition, through the result of theoretical analysis, several phenomena due to the frequency-domain analysis like Gibbs phenomenon, Heisenberg''s uncertainty principle and time-domain aliasing are discussed. From simulation results, the effect of switching delay is shown to be limited within a specific range of switching delay.
Subjects
Energy harvesting
Scavenging
Broadband vibrations
Piezoelectric
Switching damping
Nonlinear processing
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-100-R96543020-1.pdf

Size

23.54 KB

Format

Adobe PDF

Checksum

(MD5):a19d4ea37f8d1537bd075538e4e42277

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science