Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Electrical Engineering / 電機工程學系
  4. Joint feature disentanglement and hallucination for few-shot image classification
 
  • Details

Joint feature disentanglement and hallucination for few-shot image classification

Journal
IEEE Transactions on Image Processing
Journal Volume
30
Pages
9245-9258
Date Issued
2021
Author(s)
Lin C.-C
Chu H.-L
YU-CHIANG WANG  
CHIN-LAUNG LEI  
DOI
10.1109/TIP.2021.3124322
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85118679441&doi=10.1109%2fTIP.2021.3124322&partnerID=40&md5=84ddf8d6fe68725a9cfe66d7cb9c73f5
https://scholars.lib.ntu.edu.tw/handle/123456789/607369
Abstract
— Few-shot learning (FSL) refers to the learning task that generalizes from base to novel concepts with only few examples observed during training. One intuitive FSL approach is to hallucinate additional training samples for novel categories. While this is typically done by learning from a disjoint set of base categories with sufficient amount of training data, most existing works did not fully exploit the intra-class information from base categories, and thus there is no guarantee that the hallucinated data would represent the class of interest accordingly. In this paper, we propose Feature Disentanglement and Hallucination Network (FDH-Net), which jointly performs feature disentanglement and hallucination for FSL purposes. More specifically, our FDH-Net is able to disentangle input visual data into class-specific and appearance-specific features. With both data recovery and classification constraints, hallucination of image features for novel categories using appearance information extracted from base categories can be achieved. We perform extensive experiments on two fine-grained datasets (CUB and FLO) and two coarse-grained ones (mini-ImageNet and CIFAR-100). The results confirm that our framework performs favorably against state-of-the-art metric-learning and hallucination-based FSL models. ? 2021 Institute of Electrical and Electronics Engineers Inc.. All rights reserved.
Subjects
Data hallucination
Feature disentanglement
Few-shot learning (FSL)
Image classification
Classification (of information)
Disjoint sets
Few-shot learning
Images classification
Learning approach
Learning tasks
Novel concept
Training data
Training sample
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science