Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Electrical Engineering / 電機工程學系
  4. How to exploit the transferability of learned image compression to conventional codecs
 
  • Details

How to exploit the transferability of learned image compression to conventional codecs

Journal
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Pages
16160-16169
Date Issued
2021
Author(s)
Klopp J.P
Liu K.-C
LIANG-GEE CHEN  
SHAO-YI CHIEN  
DOI
10.1109/CVPR46437.2021.01590
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85121803469&doi=10.1109%2fCVPR46437.2021.01590&partnerID=40&md5=d1688f0d5e830c8287d356d605e31c9b
https://scholars.lib.ntu.edu.tw/handle/123456789/607244
Abstract
Lossy image compression is often limited by the simplicity of the chosen loss measure. Recent research suggests that generative adversarial networks have the ability to overcome this limitation and serve as a multi-modal loss, especially for textures. Together with learned image compression, these two techniques can be used to great effect when relaxing the commonly employed tight measures of distortion. However, convolutional neural network-based algorithms have a large computational footprint. Ideally, an existing conventional codec should stay in place, ensuring faster adoption and adherence to a balanced computational envelope. As a possible avenue to this goal, we propose and investigate how learned image coding can be used as a surrogate to optimise an image for encoding. A learned filter alters the image to optimise a different performance measure or a particular task. Extending this idea with a generative adversarial network, we show how entire textures are replaced by ones that are less costly to encode but preserve a sense of detail. Our approach can remodel a conventional codec to adjust for the MS-SSIM distortion with over 20% rate improvement without any decoding overhead. On task-aware image compression, we perform favourably against a similar but codec-specific approach. ? 2021 IEEE
Event(s)
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021
Subjects
Convolutional neural networks
Encoding (symbols)
Image coding
Image compression
Textures
Convolutional neural network
Decoding overheads
Images compression
Lossy image compression
Modal loss
Multi-modal
Network-based algorithm
Performance measure
Recent researches
Task-aware
Generative adversarial networks
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science