Design of CMOS Microwave and Millimeter-Wave Switches
Date Issued
2005
Date
2005
Author(s)
Yeh, Mei-Chao
DOI
en-US
Abstract
This purpose of the thesis is to develop the CMOS switches in microwave and millimeter wave frequency range. Two types of the switch topologies are investigated. The simplified small-signal model of passive FET is developed to simulate the insertion loss and isolation; while the nonlinear model which consists of capacitance and voltage-dependent current source is used to predict the power handling capability of the switch.
The first method to implement CMOS switch in wireless communication applications is the series-shunt topology. In order to reduce the insertion loss and increase the P1dB, the floating-body technique is used. The series-shunt switch in standard bulk 0.18-um CMOS process achieves a measured P1dB of 20 dBm, an insertion loss of 1.1 dB, and an isolation of 27 dB at 5.8 GHz. It also achieves a measured insertion loss of 0.65 dB and an isolation of 35 dB at 2.4 GHz. The effective chip size is only 0.03 mm2. The measured data agree with the simulation results well, including the power handling capability.
The second method to implement the CMOS switch is using traveling-wave concept. A wideband SPDT switch in standard bulk 0.13-um CMOS process is demonstrated. In order to extend the operation frequency, the traveling-wave circuit topology is utilized. Due to the different requirements in the transmit and receive paths, the switch is designed to be asymmetric. In the receive path, the switch achieves a measured insertion loss less than 2.7 dB, a measured isolation better than 26 dB from 27 to 50 GHz. On the other hand, for the transmit path, the switch also achieves a measured insertion loss less than 4.4 dB, and an isolation better than 14 dB from 30 to 63 GHz. At 40 GHz, a measured input P1dB of 13.8 dBm is attained. The chip size is only 0.8 x 0.5 mm2. The measured data agree with the simulation results well. This work is the first CMOS switch in millimeter-wave frequency range.
A dc-to-50-GHz SPDT switch using traveling-wave concept in standard bulk 0.18-um CMOS process is also implemented. Instead of the quarter wave length transmission lines, a series transistor can be used for the wide bandwidth operation. The switch achieves a measured insertion loss of less than 6 dB, a measured isolation of better than 38 dB from dc to 50 GHz. The measured input P1dB of 17.4 dBm at 5.8 GHz and 19.6 dBm at 40 GHz is attained. The chip size is only 0.5 x 0.5 mm2. This work is the first CMOS switch from dc to millimeter-wave frequency with a miniature chip size.
Subjects
切換器
互補式金氧半場效電晶體
單刀雙擲
switches
CMOS
SPDT
Type
thesis
File(s)![Thumbnail Image]()
Loading...
Name
ntu-94-R92942008-1.pdf
Size
23.31 KB
Format
Adobe PDF
Checksum
(MD5):300350beecef7af0ab901313c5c61e6b
