Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Communication Engineering / 電信工程學研究所
  4. Design and Implementations of Broadband Power Amplifiers and Frequency Dividers
 
  • Details

Design and Implementations of Broadband Power Amplifiers and Frequency Dividers

Date Issued
2006
Date
2006
Author(s)
Chuang, Mei-Chen
DOI
en-US
URI
http://ntur.lib.ntu.edu.tw//handle/246246/58822
Abstract
Researches on the broadband power amplifier for microwave wide band system and frequency divider for phase locked loops are presented in this dissertation. Power amplifier is an essential building block in transmitter system. Broadband power amplifier is not easy to design. Using distributed amplifier as the architecture can achieve wide band. Two broadband Pas are designed and implemented, and they achieve broadband, high gain, medium power and gain flatness. A 4-37GHz broadband power amplifier using 0.15μm has been design and fabricated. The circuit cascades two distributed power amplifier for higher output power. The other is a 15-50GHz broadband power amplifier. This circuit cascade two distributed amplifier and a single-stage amplifier as the output. Reducing the stage of the distributed amplifier and using interstage matching network can reduce the dc power consumption and achieves flat gain. Phase-locked loop (PLL) technique has been developed for decades and is the most frequently adopted to realize a high-quality LO source. Frequency divider is the design bottleneck for high frequency PLL since the conventional flip-flop based structure is not suitable for high-speed operation. In this thesis, high speed frequency divider topologies, such as injection locked frequency divider and regenerative frequency divider are investigated. A 30-GHz divided-by-four frequency divider fabricated using TSMC 0.18-μm CMOS has been designed and fabricated. The circuit adopts current-reuse method to reduce dc power and size of the layout due to less components needed. A 50-GHz divided-by-four frequency divider fabricated using TSMC 0.18μm CMOS. Using matching networks, these circuits achieve divide-by-four function directly with the small chip size.
Subjects
功率放大器
除頻器
Power amplifier
divider
Type
thesis

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science