Publication:
Development of LED Wafer-level Packaging Process and Micro-structure Hybrid Lens Mold

dc.contributor指導教授:楊申語
dc.contributor臺灣大學:機械工程學研究所zh_TW
dc.contributor.authorLin, Shang-Pingen
dc.creatorLin, Shang-Pingen
dc.date2014
dc.date.accessioned2014-11-29T04:32:18Z
dc.date.accessioned2018-06-28T18:12:44Z
dc.date.available2014-11-29T04:32:18Z
dc.date.available2018-06-28T18:12:44Z
dc.date.issued2014
dc.description.abstractLED has been widely used in illumination and display. However, most LEDs are packaged by dispensing method, which is low in productivity and complicated in process. Developing an efficient packaging technology has become an important issue. Wafer level packaging integrated with lens has drawn great research effort. In this study, transfer molding technique and gas-assisted imprinting UV curing process are employed to perform the wafer level packaging. First, a transfer molding machine was designed and implemented for wafer-level LED packaging integrated with lens. The effects of resin volume, mold temperature, clamping force and injection pressure on lens formability were investigated. 8 × 8 packaging with lens has been successfully realized on a 4-inch wafer. The replication rate of lens’ height is more than 96%. With temperature of 100 ℃ and injection pressure of 20 psi, the 97.7% replication rate of lens height can be reached. The gas-assisted UV curing process for wafer-level LED lens packaging was also developed. The UV transparent mold was fabricated with gas-assisted hot embossing and PDMS casting. The reversal imprinting process was used for bubble free. The effects of forming parameters including imprinting pressure, size of PDMS mold, UV resin coating time on lens formability were investigated. An 8×8 packaging with integrated lens structure on 4-inch wafer had been successfully realized. Homogeneous lens shape with a 98% replication rate of lens’ height can be reached. Since lens’ shape affects optical performance, this study further investigated the effects of microstructures on lens surface with simulation. The optical performances of micro-lens hybrid lens and V-cut structure hybrid lens were analyzed and confirmed. The molds for the micro-structured hybrid lens were manufactured by 2-step gas-assisted hot embossing and PDMS casting. Using the micro-structured hybrid mold and the gas-assisted imprinting UV curing process, wafer level packaging integrated with micro-structured hybrid lens has been successfully realized. This study demonstrates the potential of the gas-assisted imprinting UV curing process and micro-structured hybrid lens in LED wafer level packaging.en
dc.description.tableofcontents口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iv 目次 vi 圖目錄 x 表目錄 xvi 第一章 導論 1 1.1 前言 1 1.2 LED簡介 1 1.2.1 LED產業 1 1.2.2 LED歷史 2 1.2.3 LED發光原理 3 1.2.4 白光LED介紹 4 1.2.5 LED封裝製程簡介 5 1.3 研究動機與方向 6 1.4 論文架構 7 第二章 文獻回顧 8 2.1 LED全晶圓封裝技術 8 2.2 LED封裝透鏡設計技術 13 2.3 微結構轉印技術製程 17 2.4 文獻整體回顧 22 第三章 實驗設置 23 3.1 實驗架設及整體流程規劃 23 3.1.1 實驗架設說明 23 3.1.2 整體實驗流程規劃 23 3.2 熱固性材料轉注成型LED全晶圓含透鏡封裝實驗 25 3.2.1 熱固性封裝材料選用 25 3.2.2 轉注成型機台設計組裝 27 3.2.3 模具設計開發 33 3.3 氣體輔助壓印紫外光固化LED全晶圓含透鏡封裝實驗 36 3.3.1 封裝膠體選擇 36 3.3.2 紫外光固化設備 37 3.3.3 透明透鏡模具 38 3.3.4 刮刀機 40 3.3.5 氣體輔助紫外光固化模具 40 3.4 微結構複合透鏡模具製作 41 3.4.1 氣體輔助熱壓製作具微結構之PC薄膜 41 3.4.2 氣體輔助熱壓製作微結構複合模具 44 3.4.3 PDMS微結構複合模具製作 45 3.5 周邊輔助設備 46 3.5.1 真空脫泡設備 46 3.5.2 富士感壓軟片(Fuji Prescale Pressure Indicating Film) 46 3.5.3 2.5D光學影像顯微量測複合儀(2.5D Profile Projector) 47 3.5.4 雷射共軛焦顯微鏡(KEYENCE, VK-9710) 47 3.5.5 紫外光能量計 48 3.6 本章結論 49 第四章 熱固性材料轉注成型LED 50 4.1 轉注成型實驗設置 50 4.1.1 OE-6630膠體前處理 50 4.1.2 模具、機台設置 50 4.1.3 轉注成型製程 50 4.2 轉注成型參數探討 51 4.2.1 膠體量探討 52 4.2.2 合模油壓壓力探討 53 4.2.3 進膠氣壓探討 54 4.3 透鏡形貌量測 59 4.4 本章結論 60 第五章 紫外光固化LED全晶圓含透鏡封裝實 61 5.1 紫外光固化封裝實驗設置 61 5.1.1 紫外光固化樹脂塗布方式 61 5.1.2 氣體輔助壓印紫外光固化模具設置 62 5.2 紫外光固化封裝實驗參數探討與形貌量測 63 5.2.1 PDMS透鏡模具壓印均勻度探討 63 5.2.2 進氣壓力探討 66 5.3 氣體輔助壓印紫外光固化封裝實驗與轉注成型封裝實驗比較 69 5.4 本章結論 70 第六章 微結構複合模具製作 72 6.1 微結構複合透鏡光學性質模擬 72 6.2 微結構複合模具製作流程 75 6.2.1 微結構複製於PC薄膜 75 6.2.2 透鏡結構複製於PC薄膜 77 6.3 模具微結構形貌變化 80 6.4 微結構複合透鏡壓印後光學性質探討 84 6.5 本章結論 89 第七章 結論與未來研究方向 90 7.1 研究成果總結 90 7.2 未來研究方向 91 參考文獻 93 圖目錄 Figure 1 1 LED產業發展趨勢 2 Figure 1 2 LED發光原理 3 Figure 1 3 三種白光LED發光方式 4 Figure 1 4 點膠封裝製程 5 Figure 1 5 晶圓級封裝製程 6 Figure 2 1 溝槽表面張力限制膠體形狀示意圖[7] 10 Figure 2 2 膠體自然形成透鏡形狀上視圖[7] 10 Figure 2 3 VPESTM全晶圓封裝流程圖[8] 11 Figure 2 4 光阻回流法(Reflow)大面積微透鏡製造流程圖:(a)光阻塗布基材;(b)加熱使光阻回流成透鏡形貌;(c)(d)電鑄翻製鎳模具;(e)(f)使用鎳模具製作大面積微透鏡陣列[10] 12 Figure 2 5 轉注成型封裝流程圖:將膠體灌入事先處理之基材,放入真空腔體除泡,以模具進行壓印並加熱固化,脫模完成封裝[13] 12 Figure 2 6 路燈一次光學透鏡外型設計[14] 15 Figure 2 7 低發散角度光型透鏡設計[16] 15 Figure 2 8 噴火口透鏡外型製作流程:(a)定義基材位置及固定環尺寸;(b)放置固定環於基材表面;(c)放置LED晶片於基材並打線;(d)使用點膠機制滴入膠體且膠體受固定環限制;(e)使用模具進行壓印並固化;(f)完成噴火口透鏡外型[17] 16 Figure 2 9 曝光顯影製程於LED晶片上製作微透鏡陣列[21] 16 Figure 2 10 蛾眼抗反射結構製作於LED透鏡上:(1)塗布UV膠於透鏡上;(2)覆蓋蛾眼結構軟模;(3)UV曝光固化;(4)脫模完成蛾眼結構複製[22] 17 Figure 2 11 微透鏡結構增強出光強度[23] 17 Figure 2 12 硬板直壓法缺陷示意圖:(a)理想狀態;(b)壓板表面粗糙度影響;(c)模具表面粗糙度影響;(d)壓板位移精度影響;(e)基材表面粗糙度影響[24] 19 Figure 2 13 (a)氣墊熱壓(ACP)原理圖;(b)感壓軟片壓力測試,左為硬板直壓,右為氣墊熱壓[24] 19 Figure 2 14 氣體輔助熱壓成型製程步驟圖[25] 20 Figure 2 15 氣體輔助壓印之壓力均勻性檢測結果(面積150×150 mm2)[25] 21 Figure 2 16 氣體輔助熱壓轉印半波長結構PC基材流程圖:(a)陽極氧化鋁(AAO)模具;(b)於陽極氧化鋁模鍍金;(c)氣體輔助熱壓轉印;(d)半波長結構成品[26] 21 Figure 3 1 實驗規劃流程圖 24 Figure 3 2 封裝膠體OE-6630 27 Figure 3 3 脫模劑GA-7550 27 Figure 3 4 EFD 1500XL氣動式點膠機 28 Figure 3 5 黑色料管及白色活塞 28 Figure 3 6 氣動式點膠機結合熱壓機組成簡易測試機台 29 Figure 3 7 手動式油壓幫浦 30 Figure 3 8 開關控制閥 30 Figure 3 9 電熱片 31 Figure 3 10 感溫線 31 Figure 3 11 溫度控制器 31 Figure 3 12 機台組裝示意圖 32 Figure 3 13 機台組裝實體圖 32 Figure 3 14 公模具繪製圖 33 Figure 3 15 母模具繪製圖 34 Figure 3 16 公母模實體圖 34 Figure 3 17 模仁透鏡繪製圖 35 Figure 3 18 單顆透鏡於基板示意圖 35 Figure 3 19 模仁及母模具組裝圖 35 Figure 3 20 紫外光固化膠體FP 4274 36 Figure 3 21 紫外光固化燈具 37 Figure 3 22 紫外光固化光源光能量值 38 Figure 3 23 自組裝刮刀機 40 Figure 3 24 氣體輔助紫外光固化模具,由左至右分別下模腔、上模腔 41 Figure 3 25 熱壓機台 43 Figure 3 26 熱壓製程溫度、壓力曲線圖 44 Figure 3 27 氣體輔助熱壓上下模腔 45 Figure 3 28 富士感壓軟片 46 Figure 3 29 3D光學影像顯微量測複合儀 47 Figure 3 30 雷射共軛焦顯微鏡 48 Figure 3 31 紫外光能量計 49 Figure 4 1 膠體充填機制流程圖 51 Figure 4 2 膠體不足造成未完全充填 52 Figure 4 3 膠體過量造成溢膠 53 Figure 4 4 膠體量與透鏡成型數目關係圖 53 Figure 4 5 合模壓力不足導致膠體圓心擴散 54 Figure 4 6 進膠氣壓10 psi、膠體量2.0 g、油壓壓力50 kgf/cm2、模具溫度100 ℃ 55 Figure 4 7 進膠氣壓12 psi、膠體量1.8 g、油壓壓力50 kgf/cm2、 55 Figure 4 8 進膠氣壓14 psi、膠體量1.8 g、油壓壓力50 kgf/cm2、 55 Figure 4 9進膠氣壓20 psi、膠體量2.0 g、油壓壓力50 kgf/cm2、模具溫度100 ℃ 56 Figure 4 10進膠氣壓30 psi、膠體量2.0 g、油壓壓力50 kgf/cm2、 56 Figure 4 11 約50%透鏡表面呈現霧狀 57 Figure 4 12 常溫下膠體黏度與時間關係圖 57 Figure 4 13 成型操作窗 58 Figure 4 14 透鏡完整充填實體圖 58 Figure 5 1 膠體塗布完成圖 62 Figure 5 2 氣體輔助壓印紫外光固化LED全晶圓含透鏡封裝實驗流程圖 63 Figure 5 3 感壓軟片測試模具不平整結果 64 Figure 5 4模具邊緣受壓示意圖(a)透鏡結構在模具邊緣;(b)模具邊緣無透鏡結構 65 Figure 5 5 模具邊緣透鏡受壓變形 65 Figure 5 6 4LW感壓軟片壓力分布檢測(a)PDMS模具邊緣無延伸;(b)PDMS模具邊緣長度延伸 65 Figure 5 7 PDMS透鏡模具 66 Figure 5 8 透鏡轉印實體圖 67 Figure 5 9 PDMS模具量測區域示意圖 67 Figure 5 10 不同進膠氣壓模具邊緣與中心區域透鏡平均高度 68 Figure 5 11 4LW感壓軟片壓力分布(a)進氣壓力10 psi;(b)進氣壓力25 psi 68 Figure 5 12 兩種封裝製程時間比較圖 70 Figure 6 17 Trace pro光學模擬示意圖 73 Figure 6 18微結構於凸透鏡上示意圖(a)V型溝槽結構;(b)微透鏡陣列結構 73 Figure 6 19 微透鏡陣列複合模具光強度模擬結果 74 Figure 6 20 V型溝槽結構複合模具與結構垂直方向光強度模擬結果 74 Figure 6 1 微透鏡結構鎳模具形貌 76 Figure 6 2 V溝結構鎳質模具形貌 76 Figure 6 3氣體輔助熱壓製程壓印微結構於PC基材 76 Figure 6 4 氣體輔助熱壓製程進行微結構複合模具製作示意圖 77 Figure 6 5 微透鏡結構複合透鏡PC模具 78 Figure 6 6 V型溝槽結構複合透鏡PC模具 78 Figure 6 7 微透鏡結構複合透鏡PDMS模具 79 Figure 6 8 V型溝槽結構複合透鏡PDMS模具 79 Figure 6 9 表面具微透鏡結構之PC薄膜形貌 81 Figure 6 10 表面具V溝結構之PC薄膜形貌 82 Figure 6 11 微透鏡陣列結構複合PC模具透鏡頂部圖 82 Figure 6 12 V型溝槽結構複合PC模具透鏡頂部圖 82 Figure 6 13 表面具微透鏡結構之PC透鏡模具形貌 83 Figure 6 14 表面具V型溝槽結構之PC透鏡模具形貌 83 Figure 6 15 微透鏡結構複合透鏡封裝 84 Figure 6 16 V型溝槽結構複合透鏡封裝 84 Figure 6 21 經過氣輔熱壓後V型溝槽複合透鏡模具光學模擬 86 Figure 6 22 V型溝槽複合透鏡結構之光行徑示意圖 87 Figure 6 23 經過氣體輔助熱壓V型溝槽複合透鏡結構之光行徑示意圖 87 Figure 6 24 V型溝槽結構間距56.81μm、高度33.4μm複合透鏡光學模擬結果 88 Figure 6 25經過氣輔熱壓後微透鏡陣列複合透鏡模具光學模擬 88 Figure 6 26 透鏡形貌與光型關係示意圖 89 表目錄 Table 3 1 OE-6630性質表 26 Table 3 2 FP 4274性質表 37 Table 4 1 透鏡高度量測結果 59 Table 5 1 不同進氣壓力透鏡高度量測結果 69 Table 6 1微結構複合透鏡模具製作微結構尺寸變化 81zh_TW
dc.format.extent6354473 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://ntur.lib.ntu.edu.tw//handle/246246/263260
dc.identifier.uri.fulltexthttp://ntur.lib.ntu.edu.tw/bitstream/246246/263260/1/ntu-103-R01522717-1.pdf
dc.languagezh-TW
dc.rights論文公開時間:2014/08/25
dc.rights論文使用權限:同意有償授權(權利金給回饋學校)
dc.subjectLED晶圓級封裝zh_TW
dc.subject轉注成型zh_TW
dc.subject紫外光固化zh_TW
dc.subject氣體輔助壓印成型zh_TW
dc.subject微結構複合透鏡zh_TW
dc.titleDevelopment of LED Wafer-level Packaging Process and Micro-structure Hybrid Lens Molden
dc.typethesisen
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ntu-103-R01522717-1.pdf
Size:
23.54 KB
Format:
Adobe Portable Document Format