Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Chemical Engineering / 化學工程學系
  4. Supramolecular block copolymers: PCBM composite for resistor-type memory device application
 
  • Details

Supramolecular block copolymers: PCBM composite for resistor-type memory device application

Date Issued
2011
Date
2011
Author(s)
Lian, Shiang-Lin
URI
http://ntur.lib.ntu.edu.tw//handle/246246/252193
Abstract
Recently years, polymeric materials use to the memory device applications as an emerging area. The donor-acceptor type polymers have attracted a significant interest for memory device applications due to their tunable electronic properties through molecular design. However, the effects of the different polymer structure on the pure polymer memory characteristics and the application of functional block copolymer composites being used to disperse and control fullerene domain size through specified physical interaction on the nanomaterials composite memory characteristics have not yet been explored. In this thesis, we explore fluorene-based conjugated rod-coil block copolymer and thiophene-containing side-chain polymers with the different block ratio effect of pure copolymer and nanocomposites on resistive type memory device application. In the first part of this thesis (chapter 2), the optoelectronic, morphology and the memory device properties of diblock (with two different ratio 10/37, 10/68) and triblock (with the ratio41/40/41) poly[2,7-(9,9-dihexylfluorene)](PF)-block-poly(2-vinylpyridine)(P2VP) copolymers are reported. The pure copolymer PF10-b-P2VP37, PF10-b-P2VP68 and P2VP41-b-PF40-b-P2VP41 device exhibit SRAM, SRAM, and DRAM characteristic, respectively. The three pure polymers device exhibit high ON/OFF ratio (107) and threshold voltage about -4V. The switching effect is based on the fluorene moieties transport ability with coexisting P2VP as the charge trap sites. The electric volatile is attributed to the back transferring of shallow trap depth. For the composite system, the varied PCBM content of PCBM: PF-b-P2VP composite device exhibit volatile memory behavior, WORM, or conductor behaviors. The optical absorption and photoluminescence indicated the charge transfer between copolymer and PCBM, which lead to memory characteristics. However, the non-volatile type memory characteristic is associated with the high electron affinity of PCBM. We also compare the memory behavior with different block length and the difference between diblock and triblock copolymer. In the case of PCBM: diblock copolymer composite, by loading less content of PCBM in PF10-b-P2VP68 matrix could achieve the memory performances which need loading more PCBM content for PF10-b-P2VP37. This results is due to the longer P2VP block length of PF10-b-P2VP68, it probably attract more amount PCBM approach copolymer, thus, the distance of isolated domain size in the electrical connected channel between two electrodes is decrease. The morphology and the photoluminescence quenching relativity of these two diblock composites also agree with this result. In addition, the triblock: PCBM composite devices have significant lower threshold voltage than diblock: PCBM composite. It is due to the P2VP41-b-PF40-b-P2VP41 have higher π-π interchain stacking and stack together favorably leading the charge transfer between P2VP41-b-PF40-b-P2VP41 and PCBM is probably easier than diblock composite. This study indicate that the device electrical characteristic could be tune by varied the loading PCBM content or the design of copolymer architecture. In the second part of this thesis (chapter 3), supramolecular composite thin films of thiophene-containing side-chain polymers PT-b-P2VP: [6,6]-Phenyl-C61-Butyric Acid Methyl Ester (PCBM) were prepare for memory device. The optical absorption and photoluminescence results indicate that the formation charge transfer between PT-b-P2VP and PCBM. The memory device exhibited the WORM type characteristics with threshold voltage -4 ~ -4.6 and ON/OFF ratio 103 ~105. The switching behavior can be explained by the charge injection dominated thermal emission for OFF state and the field induced charge transport in the ON state. This study provide the novel nanomaterials memory device application through the physical interaction between functional block copolymer and fullerene controlling domain size.
Subjects
polymer memory
resistor-type memory
block copolymer
PCBM
supramolecular interaction
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-100-R98524048-1.pdf

Size

23.54 KB

Format

Adobe PDF

Checksum

(MD5):a450d99a264214ac2ded384b301b1241

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science