Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Electrical Engineering / 電機工程學系
  4. Efficient Mind-wandering Detection System with GSR Signals on MM-SART Database
 
  • Details

Efficient Mind-wandering Detection System with GSR Signals on MM-SART Database

Journal
IEEE Workshop on Signal Processing Systems, SiPS: Design and Implementation
Journal Volume
2021-October
Pages
199-204
ISBN
9.78167E+12
Date Issued
2021
Author(s)
AN-YEU(ANDY) WU  
DOI
10.1109/SiPS52927.2021.00043
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85122849332&doi=10.1109%2fSiPS52927.2021.00043&partnerID=40&md5=f161918d2f2dc6652628eacc8aafdc90
https://scholars.lib.ntu.edu.tw/handle/123456789/611195
Abstract
Mind-wandering (MW) is a ubiquitous phenomenon where the attention involuntary shifts from task-related to task-unrelated thoughts, and thus MW has negative impacts on task performance during learning. In this paper, we propose a MW detection system with galvanic skin response (GSR) signals on the multi-modal for Sustained Attention to Response Task (MM-SART) database. To explore the relationships between GSR and MW, we extract total 119 features including time, frequency, entropy, and wavelet domain. By using XGBoost as the classifier, we can achieve 0.713 AUC on the MM-SART database. However, large number of features may cause high training complexity and long inference latency. To reduce the number of features and find the most dominant features related to MW, we apply Pearson's correlation coefficients and the importance scores given by extreme gradient boosting (XGBoost) classifier. Experiment results show that by using 10 dominant features we can achieve 0.706 AUC, 70.3% accuracy, 70.8% weighted F1 score and 0.294 Cohen's kappa score on the MM-SART database. Moreover, the latency of training and inference are significantly reduced by 5x and 184x respectively. In conclusion, we have proposed an efficient MW detection system with GSR signals on the MM-SART database. © 2021 IEEE.
Subjects
Correlation-based feature selection; Extreme gradient boosting; Galvanic skin response; Mind-wandering
SDGs

[SDGs]SDG3

Other Subjects
Classification (of information); Correlation methods; Database systems; Correlation-based feature selection; Detection system; Extreme gradient boosting; Features selection; Galvanic skin response; Gradient boosting; Mind-wandering; Multi-modal; Response signal; Sustained attention; Electrophysiology
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science