A Biomimicking and Multiarm Self-Indicating Nanoassembly for Site-Specific Photothermal-Potentiated Thrombolysis Assessed in Microfluidic and In Vivo Models
Journal
Advanced Healthcare Materials
Date Issued
2023-01-01
Author(s)
Liu, Kuan Ting
Quiñones, Edgar Daniel
Liu, Ming Hsin
Lin, Che Wei
Chen, Yan Ting
Chiang, Chia Che
Fan, Yu Jui
Chuang, Er Yuan
Abstract
Thrombolytic and antithrombotic therapies are limited by short circulation time and the risk of off-target hemorrhage. Integrating a thrombus-homing strategy with photothermal therapy are proposed to address these limitations. Using glycol chitosan, polypyrrole, iron oxide and heparin, biomimicking GCPIH nanoparticles are developed for targeted thrombus delivery and thrombolysis. The nanoassembly achieves precise delivery of polypyrrole, exhibiting biocompatibility, selective accumulation at multiple thrombus sites, and enhanced thrombolysis through photothermal activation. To simulate targeted thrombolysis, a microfluidic model predicting thrombolysis dynamics in realistic pathological scenarios is designed. Human blood assessments validate the precise homing of GCPIH nanoparticles to activated thrombus microenvironments. Efficient near-infrared phototherapeutic effects are demonstrated at thrombus lesions under physiological flow conditions ex vivo. The combined investigations provide compelling evidence supporting the potential of GCPIH nanoparticles for effective thrombus therapy. The microfluidic model also offers a platform for advanced thrombolytic nanomedicine development.
Subjects
animal use alternatives (3Rs) | nanoparticles | photothermal thrombolytics | thrombosis therapy | thrombosis vessels-on-a-chip
SDGs
Type
journal article
