Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Engineering Science and Ocean Engineering / 工程科學及海洋工程學系
  4. Improve User-Experience of E-Commerce Website by Graph Analysis with Deep Learning
 
  • Details

Improve User-Experience of E-Commerce Website by Graph Analysis with Deep Learning

Journal
Proceedings - 2019 IEEE 5th International Conference on Big Data Intelligence and Computing, DataCom 2019
Journal Volume
18
Start Page
230
End Page
233
ISBN (of the container)
9781728141176
ISBN
9781728141176
Date Issued
2019-11-18
Author(s)
Po-Yen Wu
Yu-Rong Lai
RAY-I CHANG  
Shin-Yat Liu
DOI
10.1109/DataCom.2019.00042
DOI
10.1109/DataCom.2019.00042
URI
https://www.scopus.com/record/display.uri?eid=2-s2.0-85205281136&origin=resultslist
https://scholars.lib.ntu.edu.tw/handle/123456789/722224
Abstract
Customers regard good user-experience (UX) as the key factor in online shopping. Therefore, e-commerce (EC) websites will track users' behaviors for analyzing their relations to products. According to these analysis results, the websites' layout/workflow and recommendation are tuned to improve UX. However, conventional analysis tools usually focus on user-to-product relations. They are not good at analyzing "big and graphical"user behavior data. In this paper, we develop a graph analysis system with deep learning GNN (graph neural network). Our system uses the standard format xAPI to record user behavior data. We use graph analysis to discover their relations for improving UX. Experiments are on a real EC website with about 6,000 users in 3 months. Our system can reduce over 28% browsing actions of users to reach the page of desired products.
Event(s)
5th IEEE International Conference on Big Data Intelligence and Computing, DataCom 2019, Kaohsiung, 18 November 2019 through 21 November 2019. Code 202644
Subjects
big data
deep learning
e-commerce
graph analysis
graph neural network
UX
xAPI
Publisher
IEEE
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science