Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Electrical Engineering / 電機工程學系
  4. Constraint-aware importance estimation for global filter pruning under multiple resource constraints
 
  • Details

Constraint-aware importance estimation for global filter pruning under multiple resource constraints

Journal
IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
Journal Volume
2020-June
Pages
2935-2943
Date Issued
2020
Author(s)
Wu, Y.-C.
Liu, C.-T.
Chen, B.-Y.
SHAO-YI CHIEN  
DOI
10.1109/CVPRW50498.2020.00351
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/559182
Abstract
Filter pruning is an efficient way to structurally remove the redundant parameters in convolutional neural network, where at the same time reduces the computation, memory storage and transfer cost. Recent state-of-the-art methods globally estimate the importance of each filter based on its impact to the loss and iteratively remove those with smaller values until the pruned network meets some resource constraints, such as the commonly used number (or ratio) of filter left. However, when there is a more practical constraint like the total number of FLOPs, they ignore its relation to the estimation of filter importance. We propose a novel method called Constraint-Aware Importance Estimation (CAIE) that integrates information of the impact on the given resource into the original importance estimation only based on loss when pruning each filter. Moreover, our CAIE can be generalized to the pruning problem under multiple resource constraints simultaneously. Extensive experiments show that under the same multiple resource constraints, the model pruned with our CAIE method can not only accurately meet the constraints but also achieve the optimal performance results when comparing to existing state-of-the-art methods. © 2020 IEEE.
Other Subjects
Computer vision; Convolutional neural networks; Flow measurement; Filter-based; Memory storage; Multiple resource constraint; Optimal performance; Recent state; Redundant parameters; Resource Constraint; State-of-the-art methods; Iterative methods
2-s2.0-85090122365
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science