Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Applied Mechanics / 應用力學研究所
  4. Droplet Collision, Coalescence, Mixing, and Reaction on the Textured Surface with Wettability Gradient
 
  • Details

Droplet Collision, Coalescence, Mixing, and Reaction on the Textured Surface with Wettability Gradient

Date Issued
2014
Date
2014
Author(s)
Yeh, Szu-I
URI
http://ntur.lib.ntu.edu.tw//handle/246246/277181
Abstract
Digital microfluidics attracts much attention for its prospective applications to revolutionize biological laboratory procedures by allowing efficient assays with great versatility, small sample consumption and short detection duration. Droplets collision, colalescence and mixing behavior with different viscosities and surface tensions are the basic and important research in the development process of digital microfluidics. The aim of this study is to buildup the performance of bio-chemical detection device using droplet-based microfluidics. We manipulated the droplet on the self-assambled textured surface and investigated the different droplet coalescence profile, internal flow field inside the coalesced droplet, and mixing behavior inside the coalesced droplet caused by different characteristic (viscosity and surface tension) of fluids. We also investigated the difference of fluid mixing and reaction inside the droplet, and we show a simple and maneuverable method of digital microfluidics to modulate a biochemical reaction with a ternary droplet collision using a simple chemical reaction and DNA fluorescence resonance-energy transfer (FRET) test. We utilized micro-PIV and confocal microscopy to measure the coalescence process, internal flows, and mixing patterns of droplets with different viscosities and surface tensions after a head-on collision between a moving droplet and a stationary droplet on a wettability gradient surface. The results indicate that the mixing is driven sequentially by interior convection and diffusion once the two droplets touch each other; the convection endures less than 100 ms but dominates more than 60 % of the mixing. For the collision of droplets of identical surface tension, the surface tension affects the coalescence behavior; for the collision of droplets with distinct surface tension, the coalescence behavior and mixing quality depend on the colliding arrangement of stationary and moving droplets. We also used a high-speed camera to observe the color changing reaction inside a coalesced droplet. Compare to the traditional dye-mixing test, the chemical reaction inside the coalesced droplet facilitated the mixing of two counter-reactive fluids and was more than hundred times as efficient as the unreactive fluids mixing inside the coalesced droplet. Instead of mixing, chemical reaction inside a coalesced droplet is worth attention to the applications of digital microfluidic open-system. In droplet coalescence process, the characteristic of fluids and the ratio of volumes of two droplets caused different droplet coalescence profile especially the necking-curvature which affects the shape of the material interface between the two droplets in an initial phase. Capsules are used to protect, control and deliver drugs to the specific tissue. In recent year, multilayer microcapsules and nanocapsules are under review as multifunctional delivery systems. In this study, we also show a simple and maneuverable method to modulate the bio-chemical reaction for digital microfluidics on the surface by ternary droplet collision. The coalescence behavior and mixing quality are significantly concerned with the arrangement and configuration of different droplets on a droplet-based microfluidic system. This work significantly contributes to the understanding of droplet mixing and reaction in droplet-based microfluidic systems. Instead of mass transfer and mixing, chemical reaction inside a coalesced droplet is worth attention for digital microfluidic open-system. This work illustrates a correlation between the growth and evolution of chemical reaction and the profile (necking-curvature) of a coalesced droplet, which is also a significant reference in droplet-based microfluidic systems for biochemical use. Furthermore, the moduration of initial time and initial point of reaction inside the coalesced droplet is greater development potential on bio-chimical detection and cell-drug interaction test specifically.
Subjects
Droplet collision
Droplet coalescence
Chemical reaction
Reaction control
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-103-F95543021-1.pdf

Size

23.54 KB

Format

Adobe PDF

Checksum

(MD5):9ba9be706f26e382ccf77f6e0a8704b8

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science