Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Bioresources and Agriculture / 生物資源暨農學院
  3. Bioenvironmental Systems Engineering / 生物環境系統工程學系
  4. River Flood Ensemble Forecast Model
 
  • Details

River Flood Ensemble Forecast Model

Date Issued
2012
Date
2012
Author(s)
Yu, Szu-Liang
URI
http://ntur.lib.ntu.edu.tw//handle/246246/248558
Abstract
The special geographical and meteorological environment induced lots of natural disasters such as typhoon and flood in Taiwan. Emergency response and flood evacuation are the major non-structural measures for flood mitigation. Therefore, an accurate flood forecasting model is an indispensable tool for the decision of disaster management agencies. Probabilistic forecasting of flood stage can provide not only the most likely water level, but also the possible range, which offer the reference of a variety of potential situations for decision-makers. Based on one-dimensional dynamic wave theorem, an ensemble forecast technique has been developed in this study by considering uncertainties factors including initial condition, boundary condition, and Manning’s coefficient. The original of dynamic model is a deterministic model which converts to probabilistic forecasting model with the ensemble forecasting. The join data assimilation using the ensemble Kalman filter and back-propagation neural network are employed on gage stations which can offer better feedback estimate and model accuracy. The model is applied to the Tamsui River basin. Two typhoon events of Weipa(2007) and Sinlaku (2008) are used as model validation. The simulated results show that flood stage of the probabilistic forecasting is better accuracy than that of the deterministic forecasting. Based on the probability forecast of 95% confidence interval, the most of the observed level were located in the predicted range. From the comparison of the actual hit ratio of the two typhoon events, it can be found that the 89.5% and 78.8% of observed level fell at prediction range of confidence interval, which shown that forecast range is not enough and underestimate of the uncertainty. This phenomenon is obvious especially in the river midstream. It can be seen that the more factors of uncertainty is needed for further study.
Subjects
Ensemble forecasting
Uncertainty
Flood forecasting
Dynamic routing model
Ensemble Kalman Filter
Data Assimilation
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-101-R99622014-1.pdf

Size

23.54 KB

Format

Adobe PDF

Checksum

(MD5):aa1e45b1c45a30e976022d2cc6f4971e

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science