Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Chemical Engineering / 化學工程學系
  4. Monitoring Hydrogen Peroxide Using an Electrochemical Method During Metal Assisted Chemical Etching for Silicon
 
  • Details

Monitoring Hydrogen Peroxide Using an Electrochemical Method During Metal Assisted Chemical Etching for Silicon

Journal
Silicon
Date Issued
2021
Author(s)
Lan C.-W
Kubendhiran S
Sison G
Hsu H.P.
CHUNG-WEN LAN  
DOI
10.1007/s12633-021-01348-1
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85114133355&doi=10.1007%2fs12633-021-01348-1&partnerID=40&md5=9160a02b77e44340df70798491d09288
https://scholars.lib.ntu.edu.tw/handle/123456789/598134
Abstract
Hydrogen peroxide (H2O2) plays a vital role in some of the metal assisted chemical etching (MACE) processes for silicon. However, it evaporates easily during etching at higher temperatures and this makes the process difficult to control. As a result, the MACE process for the inverted pyramid (IP) texturization that uses H2O2 is industrially unattractive. Herein, we proposed an innovative method to monitor H2O2 during the MACE process with an electrochemical method. The screen-printed electrode (SPE) modified by reduced graphene oxide (RGO) was used. The electrode demonstrated excellent electrochemical performance and could monitor the changes of H2O2 concentration with cyclic voltammetry (CV). Interestingly, the presence of copper (Cu) in the etching solution catalyzed not only the etching process, but also the electrochemical reduction of H2O2. With a consistent H2O2 concentration measured by the electrode, the reflectivity and structural morphology of the etched wafers could be controlled easily. The electrode is disposable, and the fabrication process is rapid and inexpensive, which is suitable for real time control of the MACE processes. ? 2021, Springer Nature B.V.
Subjects
Chemical etching
Copper nanoparticles
Electrochemical reduction
Hydrogen peroxide
Reduced graphene oxide
Cyclic voltammetry
Electrochemical electrodes
Electrolytic reduction
Etching
Graphene
Oxidation
Peroxides
Real time control
Silicon wafers
ELectrochemical methods
Electrochemical performance
Electrochemical reductions
Fabrication process
Metal-assisted chemical etching
Reduced graphene oxides (RGO)
Screen printed electrodes
Structural morphology
Process control
SDGs

[SDGs]SDG7

Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science