Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Electrical Engineering / 電機工程學系
  4. Dynamic IR-Drop ECO Optimization by Cell Movement with Current Waveform Staggering and Machine Learning Guidance
 
  • Details

Dynamic IR-Drop ECO Optimization by Cell Movement with Current Waveform Staggering and Machine Learning Guidance

Journal
IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD
Journal Volume
2020-November
Date Issued
2020
Author(s)
Huang X.-X
Chen H.-C
Wang S.-W
Jiang I.H.-R
Chou Y.-C
Tsai C.-H.
HUI-RU JIANG  
DOI
10.1145/3400302.3415614
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097922384&doi=10.1145%2f3400302.3415614&partnerID=40&md5=add5ad931cc9de550baa6bf49eaa2240
https://scholars.lib.ntu.edu.tw/handle/123456789/580896
Abstract
Excessive dynamic IR-drop degrades the circuit performance and may lead to functional failure. Existing IR-drop fixing techniques at the placement stage do not consider the time-variant property and thus cannot handle dynamic IR-drop hotspots well. In current practice, designers perform Engineer Change Order (ECO) to move out these hotspot cells based on their experience. In this paper, we present a novel dynamic IR-drop ECO optimization and prediction framework by wise cell movement. We first spread high demand current cells in a global view to stagger their current waveforms. Then, we further move IR hotspot cells close to power/ground (PG) vias for minimizing the resistance from PG pads to their PG pins. Moreover, we propose an accurate machine learning-based dynamic IR-drop prediction model to guide the final cell movement. The features of our model capture power ground network characteristics, timing information, and cumulative current drawn by cells, thus leading to a general model applicable to ECO. Experimental results show that our proposed model precisely predicts dynamic IR-drop after cell movement, and our optimization scheme can substantially alleviate dynamic IR-drop without timing degradation. ? 2020 Association on Computer Machinery.
Subjects
Computer aided design; Cytology; Drops; Machine learning; Predictive analytics; Circuit performance; Current practices; Functional failure; Ground networks; Hot-spot cells; Optimization scheme; Prediction model; Timing information; Cells
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science