Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Public Health / 公共衛生學院
  3. Epidemiology and Preventive Medicine / 流行病學與預防醫學研究所
  4. Estimation Problem in Nonparametric Additive Regression Model under General Design
 
  • Details

Estimation Problem in Nonparametric Additive Regression Model under General Design

Date Issued
2007
Date
2007
Author(s)
Ni, Huey-Fan
DOI
en-US
URI
http://ntur.lib.ntu.edu.tw//handle/246246/56150
Abstract
這個研究的動機來自於將微陣列實驗(microarray experiment)所得到之基因表現值正規化(normalization), 我們考慮具有基因與區塊(block)二個因子(factor)的實驗. 由於每個基因複製(replication)的次數遠小於區塊的個數, 所以我們考慮的二因子實驗為不完整的(incomplete). 當對由微陣列實驗所產生的資料配適(fit)具相加性的二方式分類模型(additive two-way classification model), 是否所有由未之參數所形成的對比(contrast)皆為可估(estimable)是一個值得討論的問題. 假設第i個因子為不完整的N-因子實驗中主要感興趣的因子. 當對由實驗所產生的資料配適具相加性的N-方式分類模型, 我們討論消去與其他因子有關的未知參數(unknown parameter)所獲得之縮小的正規方程(reduced normal equation)的係數矩陣(coefficient matrix)之結構. 然後, 以此係數矩陣之分解為起點, 我們提出一個演算法使得具相加性的N-方式分類模型中的有效參數(effective parameter)可以被確認. 針對具相加性的二方式分類模型, 我們提出得到具一致性(consistency)之未知參數估計的充分且必要條件(sufficient and necessary condition). 最後, 我們以每一個格子(cell)至少具有一個觀查值的行列設計(row-column design)與一組由微陣列實驗所產生的資料來闡明研究中所提出之係數矩陣的分解與演算法.
Motivated by 'local normalization' to remove bias in the measured gene expressions of microarray experiments, we consider the two-factor experiment with the factors gene and block. Since the number of replications of each gene is much smaller than the number of blocks, the considered two-factor experiment is incomplete. As an additive two-way classification model is fitted to the microarray data, whether all contrasts formed by unknown parameter are estimable has to be discussed. Suppose that the ith factor of the incomplete N-factor experiment is the factor of interest. As an additive N-way classification model is fitted to the data, the structure of the coefficient matrix of reduced normal equation obtained by eliminating the parameters of the other factors is discussed. Then, an algorithm is proposed to identify the effective parameters in an additive N-way classification model based on the proposed decomposition of the coefficient matrix. A necessary and sufficient condition for getting consistent estimates of unknown parameters in an additive two-way classification model is provided. The new decomposition and algorithm are illustrated by a row-column design with at least one observation per cell and 'normalization' for microarray data in which the pin and dye bias are considered to be corrected.
Subjects
分類模型
可估計
對比
有效的參數
連接性
不完整的N-因子實驗
行列設計
一致估計
Classification model
estimable
contrast
effective parameter
connectedness
incomplete N-factor experiment
row-column design
consistent estimator
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-96-D92842007-1.pdf

Size

23.31 KB

Format

Adobe PDF

Checksum

(MD5):bcb4a155ed27c8514f7de0678f1213f5

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science