Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Chemical Engineering / 化學工程學系
  4. Role of Structural Defects in the Water Adsorption Properties of MOF-801
 
  • Details

Role of Structural Defects in the Water Adsorption Properties of MOF-801

Journal
Journal of Physical Chemistry C
Journal Volume
122
Journal Issue
10
Pages
5545-5552
Date Issued
2018
Author(s)
Choi J.
Lin L.-C.
Grossman J.C.
LI-CHIANG LIN  
DOI
10.1021/acs.jpcc.8b00014
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044121050&doi=10.1021%2facs.jpcc.8b00014&partnerID=40&md5=0d119c80365991932929d3211e5e6498
https://scholars.lib.ntu.edu.tw/handle/123456789/611484
Abstract
The nanoporous and tunable nature of metal-organic frameworks (MOFs) has made them promising adsorbents for water adsorption applications such as water harvesting and adsorptive heat pumps. In these applications, water adsorption properties in MOFs play a crucial role. However, understanding their structural defects and how defects influence adsorption thermodynamics remains limited to date. In this work, by employing Monte Carlo techniques and first-principle density functional theory calculations, we investigate the effect of defects on the water adsorption properties in MOF-801 structures at an atomic level. Our calculations show that the adsorption isotherm in perfect MOF-801 (without defects) greatly deviates from that measured experimentally. With the introduction of defects with a high density, a reasonably good agreement can be achieved, suggesting that a high defect density in MOF-801 may be responsible for its hydrophilic adsorptive behaviors. Further, water adsorption properties in MOF-801 structures are found to depend on the spatial configuration of defects, and water condensation in nanoporous MOF-801 is identified to occur preferentially along the ?110? direction. Detailed structural characteristics (accessible volume, etc.) of MOF-801 structures and the adsorption energetics of water in the frameworks are also studied and correlated with the computed adsorption isotherms. Our findings reveal important insights into the role of defects, offering a microscopic picture to help facilitate the rational design of better MOFs for water adsorption applications. ? 2018 American Chemical Society.
Subjects
Adsorption
Adsorption isotherms
Crystalline materials
Defect density
Defects
Density functional theory
Monte Carlo methods
Organometallics
Thermodynamics
Water conservation
Adsorption energetics
Adsorption thermodynamics
First-principle density-functional theories
High defect densities
Metalorganic frameworks (MOFs)
Monte Carlo techniques
Spatial configuration
Structural characteristics
Structural properties
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science