Numerical method of the Quantum Drift Diffusion in Semiconductor
Date Issued
2005
Date
2005
Author(s)
Chang, Jui-Peng
DOI
en-US
Abstract
我們是研究半導體數學中的量子擴散漂移模型(QDD Model)
又叫做密度梯度模型(DG Model),在這個巨關模型中包含了
電子密度的非線性拋物線方程和電子位能的波松方程。而我們是
利用有限差分方法來離散化這個模型方程,而且利用牛頓疊代法
來解這個離散系統,最後我利用了Ballistic二極體結構來展示
這個數值方法。
We study the quantum drift diffusion model (QDD) which was known (Density Gradient Model DG model) of semiconductor. This macroscopic model consists of a nonlinear parabolic equation for electron density, which coupled with a Poisson equation for electrostatic potential. We solve this system numerically by finite difference method, which can maintain the positivity of density in whole space. Numerical results for a ballistic diode structure are presented.
Subjects
半導體數學
擴散漂移模型
量子模型
Semiconductor
Quantum drift diffusion model
Type
thesis
File(s)![Thumbnail Image]()
Loading...
Name
ntu-94-R89221017-1.pdf
Size
23.53 KB
Format
Adobe PDF
Checksum
(MD5):f5b8565115abdf4355dcc0a3a2d7636d
